

Visual Stability Prediction and Its Application to Manipulation

Wenbin Li¹ Aleš Leonardis² Mario Fritz¹ Max Planck Institute for Informatics, Saarland Informatics Campus, Germany¹ School of Computer Science University of Birmingham, United Kingdom²

Motivation

• Understanding physics empowers human's capability for manipulation

Acquiring Intuitive Physics

Infant Learn about Support Events

[Baillargeon' 2002]

Wenbin Li Aleš Leonardis Mario Fritz

Acquiring Intuitive Physics

Related Work

- Simulation-based approach
 - [Battaglia'2013]
- Parametric models
 - [Mottaghi'2016, Wu'2015]
- Object-centric
 - [Fragkiadaki'2016]
- Pixel-based
 - [Lerer'2016, Bhattacharyya'2016]

Related Work on Modeling Stability

• [Battaglia'2013]

• [Lerer'2016]

- Ours
 - No simulation at test time (end to end learning)
 - Predicting qualitative outcomes
 - Stability prediction for manipulation

I. Stability Prediction from Visual Appearance

- Model
 - Visual stability prediction
 - Model interpretation
- Data
- Experiment
 - Synthetic data
 - Human subject test
 - Model interpretation

Visual Stability Prediction

• Formulation

Visual Stability Prediction

• Formulation

Image I \rightarrow Stability S {0,1} Pilot study: use VGG16

[K. Simonyan et al, "Very deep convolutional networks for large-scale image recognition," ICLR2015]

Model Interpretation

• GAP network for Discriminative region for stability prediction

[B. Zhou et al, "Learning Deep Features for Discriminative Localization." CVPR, 2016]

Data

· Blocks on the table simulated with physics engine

[P. W. Battaglia, et al, "Simulation as an engine of physical scene understanding," PNAS, 2013]

Data

• Scene Parameters: 16 groups, 1K scenes/group

UNIVERSITY OF BIRMINGHAM

Experiment

- Synthetic data -- 3 Groups of experiments
 - Intra-Group: Train and test on the scenes with the same scene parameters
 - Cross-Group: Train and test on the scenes with different scene parameters
 - **Generalization**: Train a global model and test on the scenes with different scene parameters

• Recognition rate w.r.t. number of blocks

Num.of Blks	Uni.		NonUni.
	2D	3D	2D
4B	93.0	99.2	93.2
6B	88.8	91.6	88.0
10B	76.4	68.4	69.8
14B	71.2	57.0	74.8

Num.of Blks	Uni.		 NonUni.	
	2D	3D	 2D	3D
$4\mathrm{B}$	93.2	99.0	95.4	99.8
6B	89.0	94.8	87.8	93.0
10B	83.4	76.0	77.2	74.8
14B	82.4	67.2	78.4	66.2

Intra-Group

Generalization

• Recognition rate w.r.t. stacking depth

Num.of Blks	Uni.		NonUni.
	2D	3D	2D
4B	93.0	99.2	93.2
6B	88.8	91.6	88.0
10B	76.4	68.4	69.8
14B	71.2	57.0	74.8

Num.of Blks	Uni.			Non	Uni.
	2D	3D	_	2D	3D
$4\mathrm{B}$	93.2	99.0		95.4	99.8
6B	89.0	94.8		87.8	93.0
10B	83.4	76.0		77.2	74.8
14B	82.4	67.2		78.4	66.2

Intra-Group

Generalization

• Recognition rate w.r.t. block size

Num.of Blks	Uı	ni.	NonUni.
	2D	3D	2D
4B	93.0	99.2	93.2
6B	88.8	91.6	88.0
10B	76.4	68.4	69.8
14B	71.2	57.0	74.8

Num.of Blks	Uni.			NonUni.		
	2D	3D	_	2D	3D	
$4\mathrm{B}$	93.2	99.0		95.4	99.8	
6B	89.0	94.8		87.8	93.0	
10B	83.4	76.0		77.2	74.8	
14B	82.4	67.2		78.4	66.2	

Intra-Group

Generalization

Generalization test

Num.of Blks	Uni.		NonUni.
	2D	3D	2D
4B	93.0	99.2	93.2
6B	88.8	91.6	88.0
10B	76.4	68.4	69.8
14B	71.2	57.0	74.8

Num.of Blks	Uni.		Non	Uni.
	2D	3D	2D	3D
$4\mathrm{B}$	93.2	99.0	95.4	99.8
6B	89.0	94.8	87.8	93.0
10B	83.4	76.0	77.2	74.8
14B	82.4	67.2	78.4	66.2

Intra-Group

Generalization

Cross-Group

Human Subject Study

- Settings
 - Sample a subset of test data to 8 subjects
 - Each given 96 images across all 16 scenes groups
 - For each scene, a rating from 1-5 is required
 - Compare the human's performance vs our model

Definitely	Probably	Cannot	Probably	Definitely
Unstable	Unstable	Tell	Stable	Stable
1	2	3	4	5

Human Subject Study

- Settings
 - Sample a subset of test data to 8 subjects
 - Each given 96 images across all 16 scenes groups
 - For each scene, a rating from 1-5 is required
 - Compare the human's performance vs our model

Num.of Blks	Uni.			NonUni.		
	2D	3D	_	2D	3D	
$4\mathrm{B}$	79.1/ 91.7	93.8/ 100.0		72.9/ 93.8	92.7/ 100.0	
6B	78.1/ 91.7	83.3/ 93.8		71.9/87.5	89.6/ 93.8	
10B	67.7/ 87.5	72.9/72.9		66.7/ 72.9	71.9/68.8	
14B	71.9/ 79.2	68.8/66.7		71.9/81.3	59.3/ 60.4	

For entry a/b, human result a, image-based prediction b

Model Interpretation

UNIVERSITY^{OF} BIRMINGHAM

Wenbin Li Aleš Leonardis Mario Fritz

Acquiring Intuitive Physics

II. Manipulation Guided by Stability Prediction

• Approach: Integrate stability prediction into manipulation

• Experiment: Robot stack block

Approach

• Difference in appearance between real world data and synthetic data

Approach: Integrating Visual Stability Prediction into Manipulation

Experiment

- Set up
 - Robot places a block on a give structure without breaking its stability

Experiment

- Prediction Rate:
 - Accuracy for stability prediction, 78.6% over all the scenes
- Manipulation Rate:
 - *# robot predict stable* ∩ *successfully put a block/# stable configurations*

Horizontal Placement

Pred.	66.7	66.7	88.9	77.8	100.0	66.7
Mani.	80.0 (4/5)	66.7 (2/3)	66.7 (2/3)	66.7 (2/3)	100.0 (3/3)	0.0 (0/3)

Vertical Placement

Pred.	100.0	60.0	100.0	80.0	40.0	60.0
Mani.	100.0 (5/5)	100.0 (3/3)	100.0 (1/1)	66.7 (2/3)	25.0 (1/4)	0.0 (0/1)

Result

Conclusion

- End-to-end learning for intuitive physics
- Integrate visual stability prediction into manipulation

Questions?

