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Motivation 

•  Understanding physics empowers human’s capability for manipulation 

Wenbin Li    Aleš Leonardis    Mario Fritz 2 



Acquiring Intuitive Physics 
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Infant Learn about Support Events 
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[Baillargeon’ 2002] 
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Acquiring Intuitive Physics 
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Related Work 

•  Simulation-based approach 
•  [Battaglia’2013] 

•  Parametric models 
•  [Mottaghi’2016, Wu’2015] 

•  Object-centric 
•  [Fragkiadaki’2016] 

•  Pixel-based 
•  [Lerer’2016, Bhattacharyya’2016]  
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Related Work on Modeling Stability 

•  [Battaglia’2013] 

•  [Lerer’2016] 

•  Ours 
•  No simulation at test time (end to end learning) 
•  Predicting qualitative outcomes 
•  Stability prediction for manipulation 
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I. Stability Prediction from Visual Appearance 

•  Model 
•  Visual stability prediction 
•  Model interpretation 

•  Data 
•  Experiment 

•  Synthetic data 
•  Human subject test 
•  Model interpretation 
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Visual Stability Prediction 

•  Formulation 

   Image I à Stability S {0,1}
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Visual Stability Prediction 

•  Formulation 

   Image I à Stability S {0,1}
   Pilot study: use VGG16 
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[K. Simonyan et al, “Very deep convolutional networks for large-scale image recognition,” ICLR2015] 
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Model Interpretation 

•  GAP network for Discriminative region for stability prediction 
 

Wenbin Li    Aleš Leonardis    Mario Fritz 11 

[B. Zhou et al, “Learning Deep Features for Discriminative Localization.” CVPR, 2016] 



Data 

•  Blocks on the table simulated with physics engine 
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[P. W. Battaglia, et al, “Simulation as an engine of physical scene understanding,” PNAS, 2013] 
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Data 

•  Scene Parameters: 16 groups, 1K scenes/group  
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Uniform	Size			 Non-Uniform	Size			

Block Number 

Block Size Stacking Depth 

2D	Stacking	 3D	Stacking	

4	Blocks	 6	Blocks	 10	Blocks	 14	Blocks	



Experiment 

•  Synthetic data -- 3 Groups of experiments 
•  Intra-Group: Train and test on the scenes with the same scene 

parameters 
•  Cross-Group: Train and test on the scenes with different scene 

parameters 
•  Generalization: Train a global model and test on the scenes with different 

scene parameters  
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Experiment on Synthetic Data 

•  Recognition rate w.r.t. number of blocks 
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Experiment on Synthetic Data 

•  Recognition rate w.r.t. stacking depth 
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Intra-Group Generalization 



Experiment on Synthetic Data 

•  Recognition rate w.r.t. block size 
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Intra-Group Generalization 



Experiment on Synthetic Data 

•  Generalization test 
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Human Subject Study 

•  Settings 
•  Sample a subset of test data to 8 subjects 
•  Each given 96 images across all 16 scenes groups 
•  For each scene, a rating from 1-5 is required 
•  Compare the human’s performance vs our model 
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Human Subject Study 

•  Settings 
•  Sample a subset of test data to 8 subjects 
•  Each given 96 images across all 16 scenes groups 
•  For each scene, a rating from 1-5 is required 
•  Compare the human’s performance vs our model 
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For entry a/b, human result a, image-based prediction b 



Model Interpretation 
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Acquiring Intuitive Physics 
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II. Manipulation Guided by Stability Prediction 

•  Approach: Integrate stability prediction into manipulation 

•  Experiment: Robot stack block 
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Approach 

Wenbin Li    Aleš Leonardis    Mario Fritz 24 

•  Difference in appearance between real world data and synthetic data 

Synthetic image Real world image 
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Approach: Integrating Visual Stability Prediction 
into Manipulation 
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Experiment 

•  Set up 
•  Robot places a block on a give structure without breaking its stability 
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Experiment 
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Pred. 66.7 66.7 88.9 77.8 100.0 66.7 

Mani. 80.0 (4/5) 66.7 (2/3) 66.7 (2/3) 66.7 (2/3) 100.0 (3/3) 0.0 (0/3) 

Horizontal Placement 

Pred. 100.0 60.0 100.0 80.0 40.0 60.0 

Mani. 100.0 (5/5) 100.0 (3/3) 100.0 (1/1) 66.7 (2/3) 25.0 (1/4) 0.0 (0/1) 

Vertical Placement 

•  Prediction Rate:  
•  Accuracy for stability prediction, 78.6% over all the scenes 

•  Manipulation Rate:  
•  # robot predict stable ∩ successfully put a block/# stable con6igurations   



Result 
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Conclusion 

•  End-to-end learning for intuitive physics 
•  Integrate visual stability prediction into manipulation 

• Questions? 
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