

Large-Scale Self-Supervised Robotic Learning **Chelsea Finn**

In collaboration with Sergey Levine and Ian Goodfellow

Berkeley Artificial Intelligence Research Laboratory

OpenAl

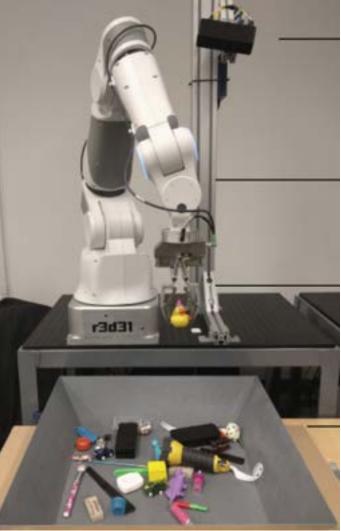
Generalization in Reinforcement Learning

to object instances

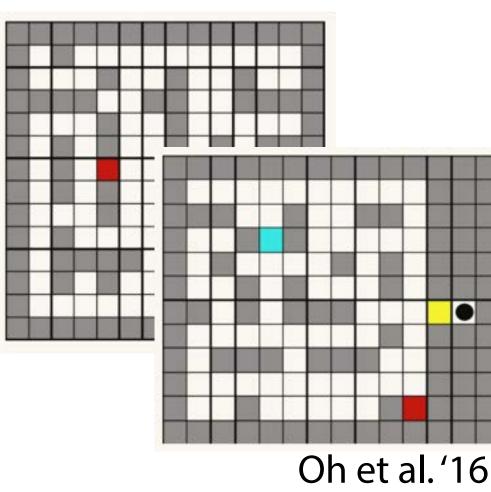
Mnih et al. '15

to tasks and environments

Pinto & Gupta '16



Levine et al. '16



Generalization in Reinforcement Learning

First lesson: human supervision doesn't scale (providing rewards, reseting the environment, etc.)

Generalization in Reinforcement Learning

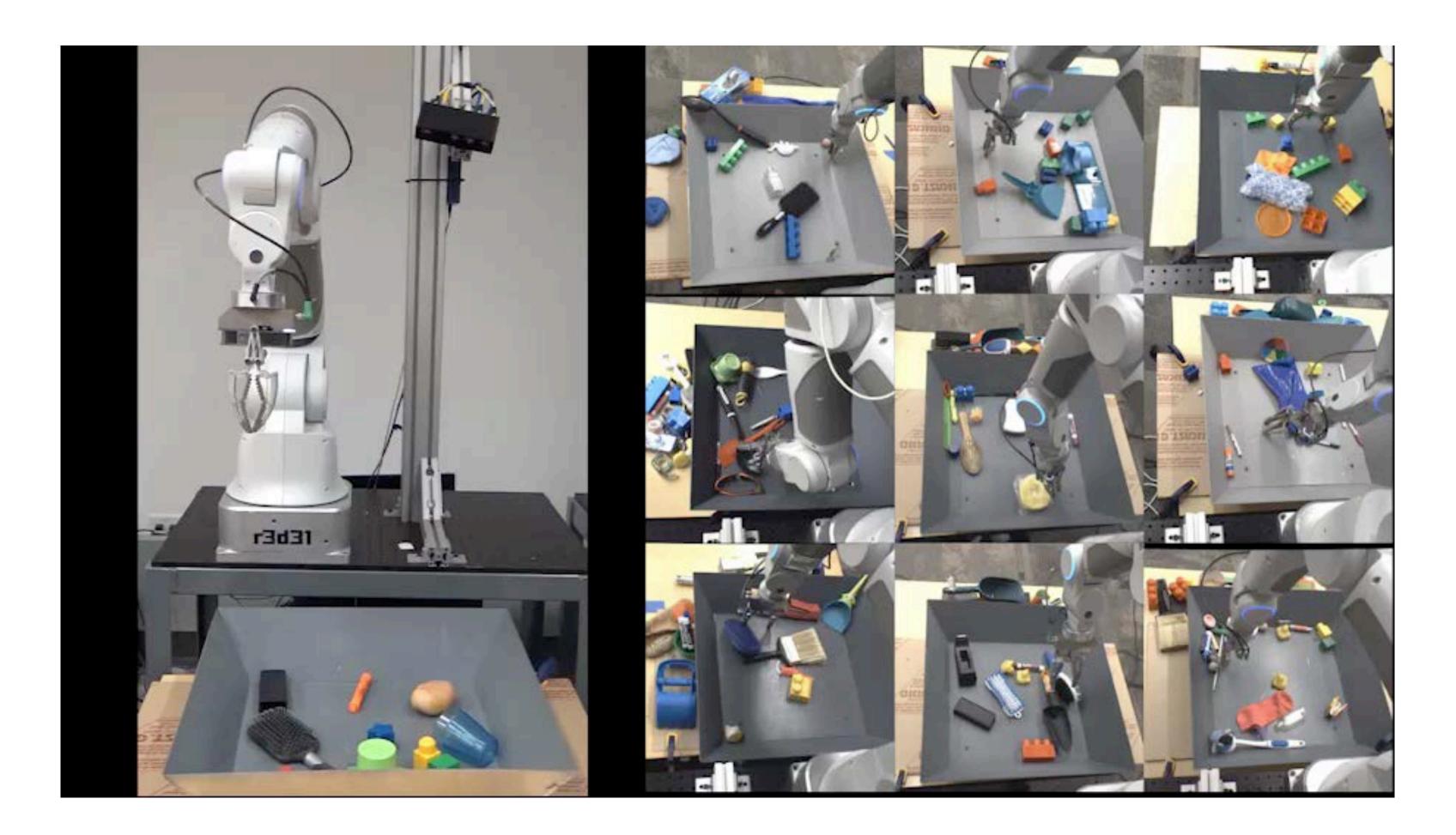
need <u>data</u> -----> scale up

where does the supervision come from? ——> self-supervision

most deep RL algorithms learn a single-purpose policy
learn general-purpose model

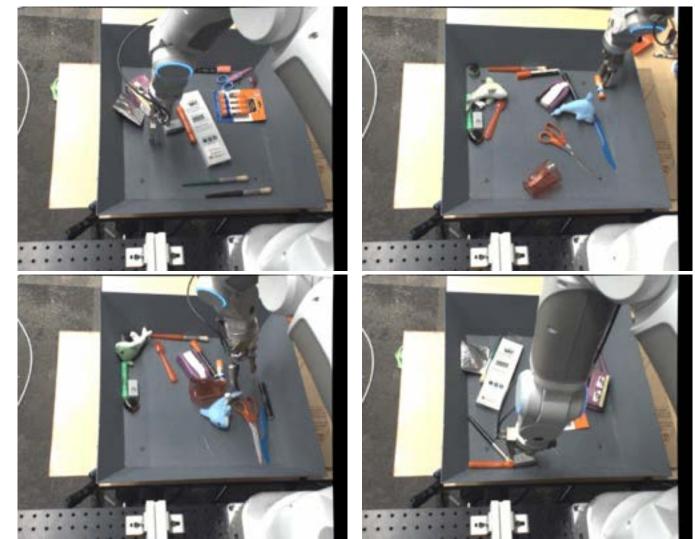
Evaluating unsupervised methods? lacking task-driven metrics for unsupervised learning

Data collection - 50k sequences (1M+ frames)

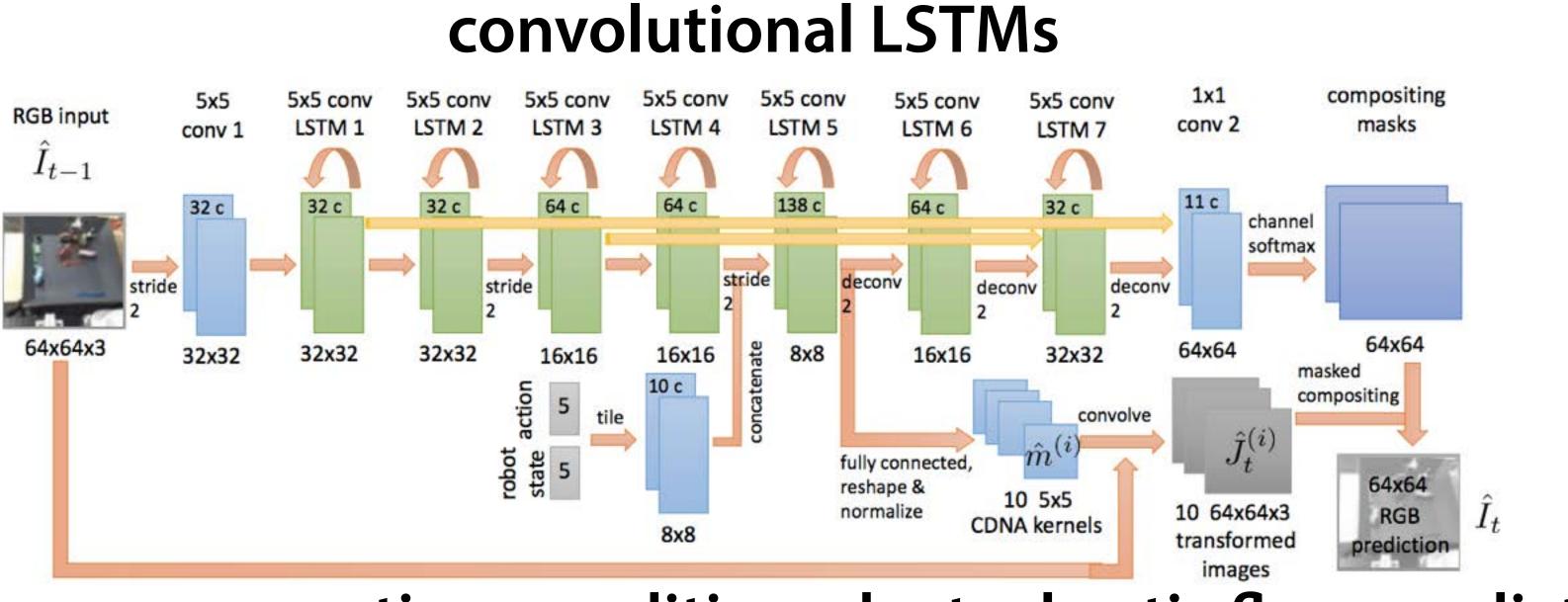


data publicly available for download sites.google.com/site/brainrobotdata

test set with novel objects



Train predictive model

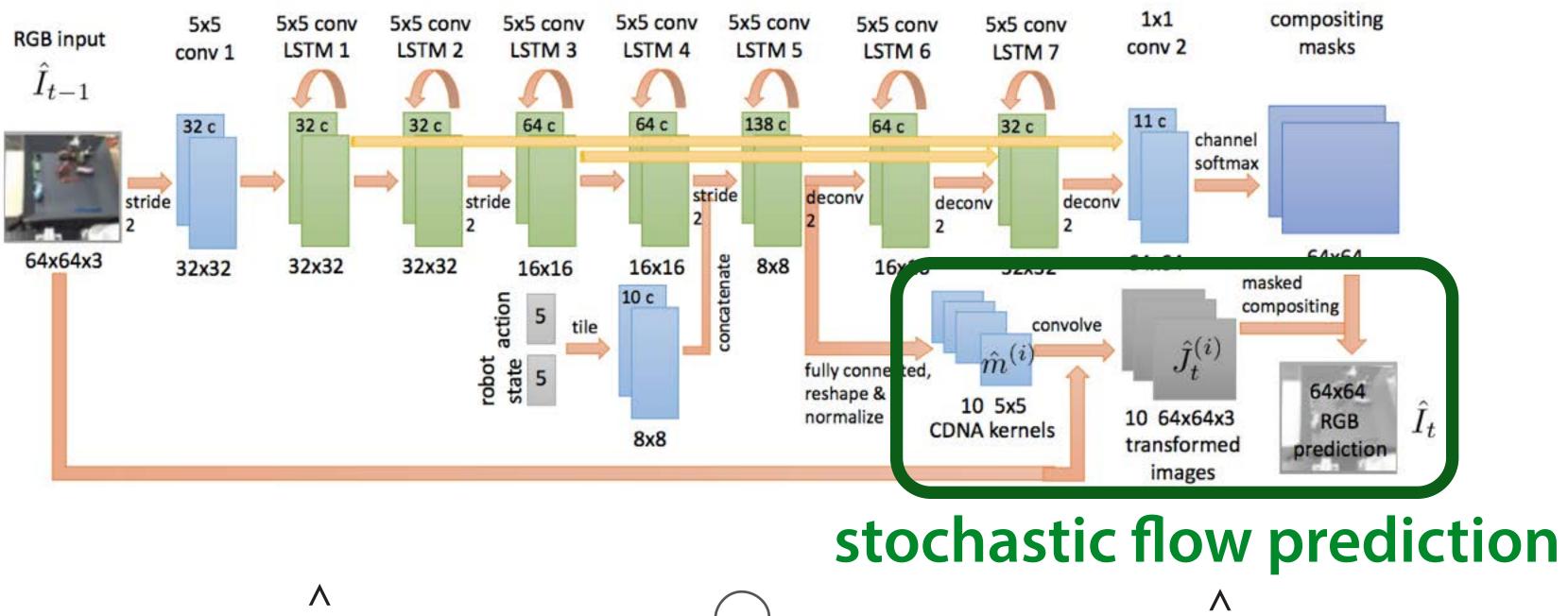


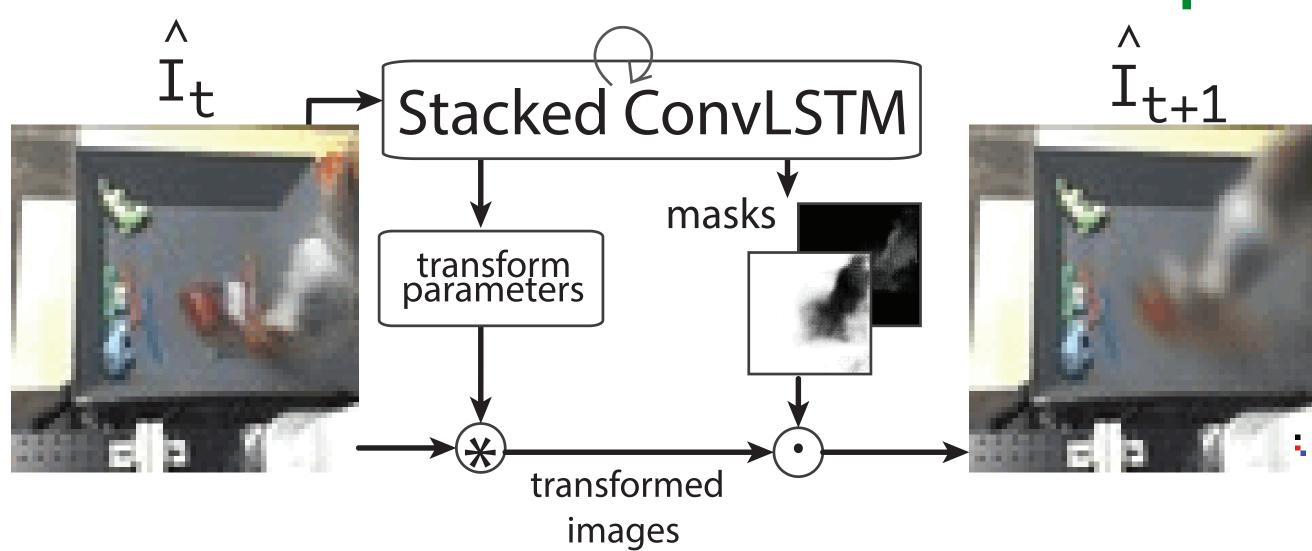
action-conditioned stochastic flow prediction

- -
- trained with I₂ loss

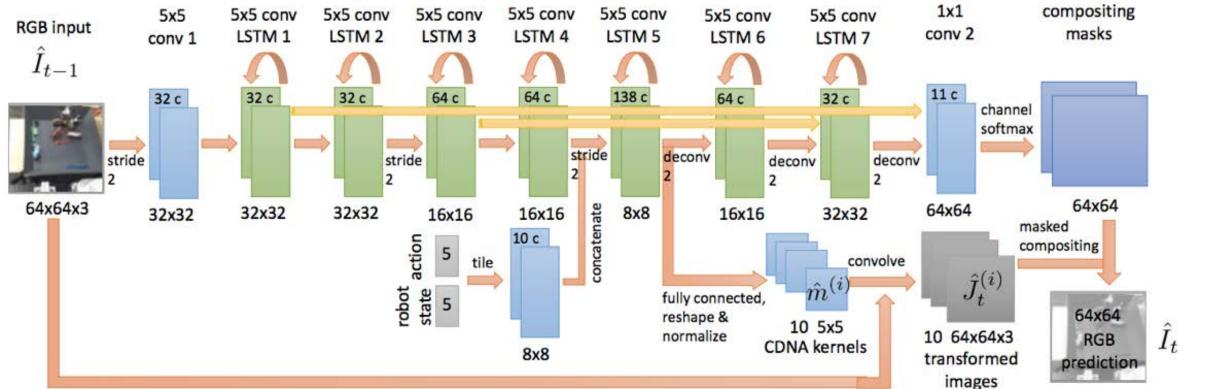
feed back model's predictions for multi-frame prediction

Train predictive model



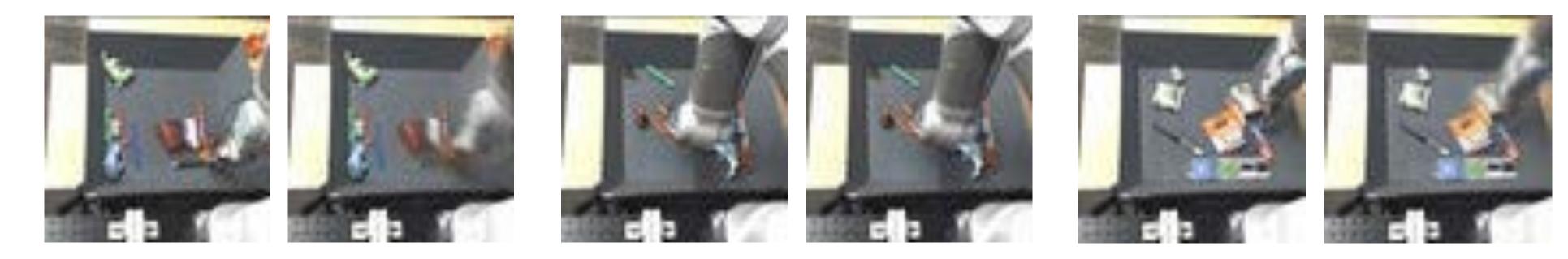


Train predictive model convolutional LSTMs



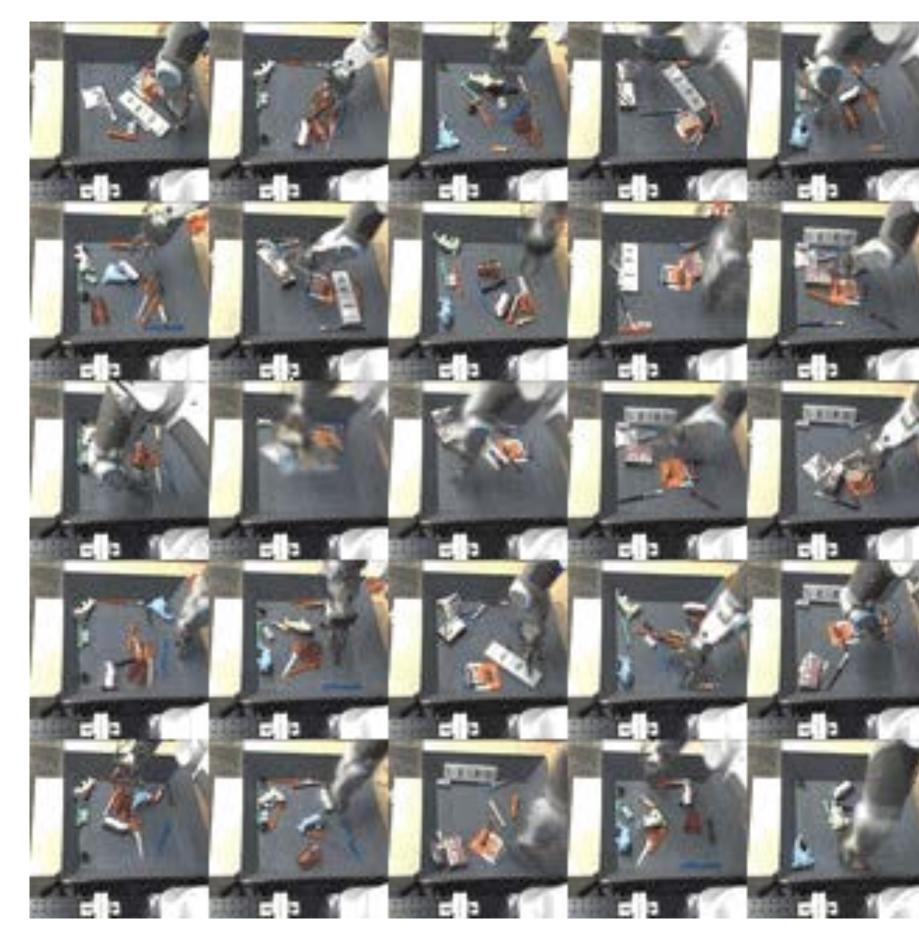
action-conditioned stochastic flow prediction

evaluate on held-out objects



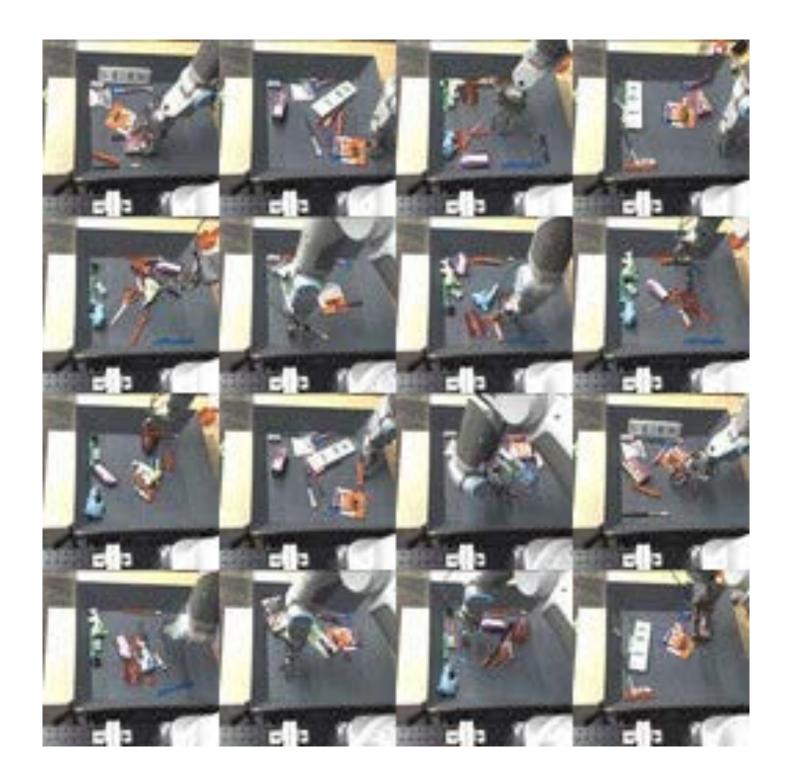
Are these predictions good?

Train predictive model Finn et al., '16



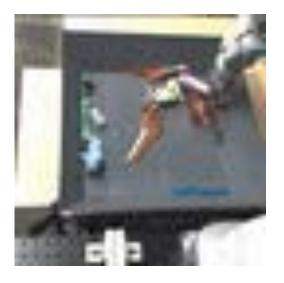
Are these predictions good? accurate? useful?

Kalchbrenner et al., '16



What is prediction good for?

action magnitude: **0**x 0.5x



1x

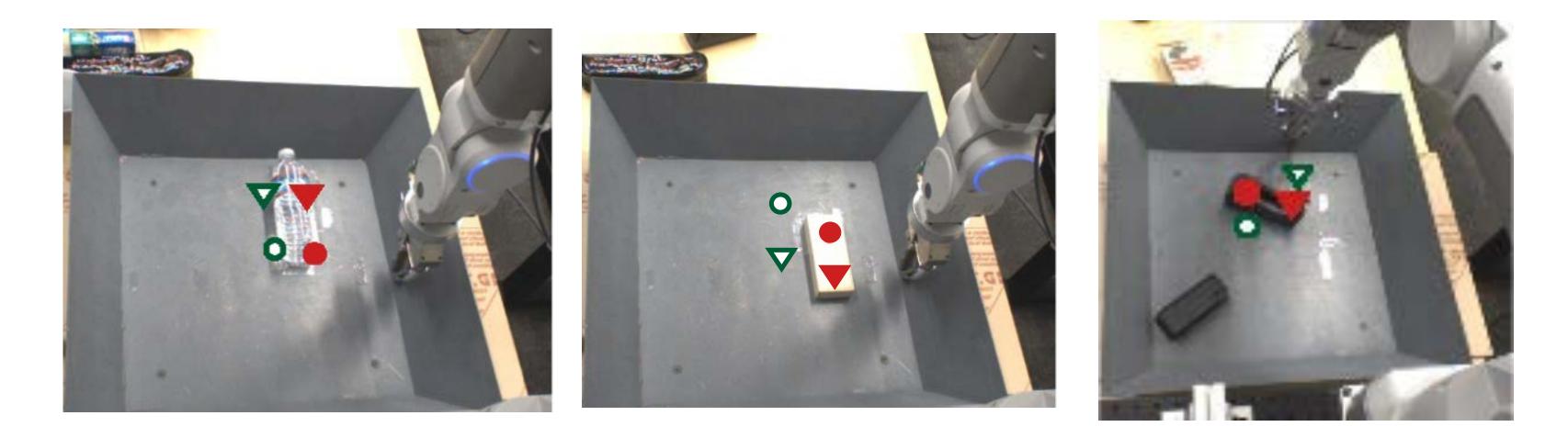
1.5x

Visual MPC: Planning with Visual Foresight

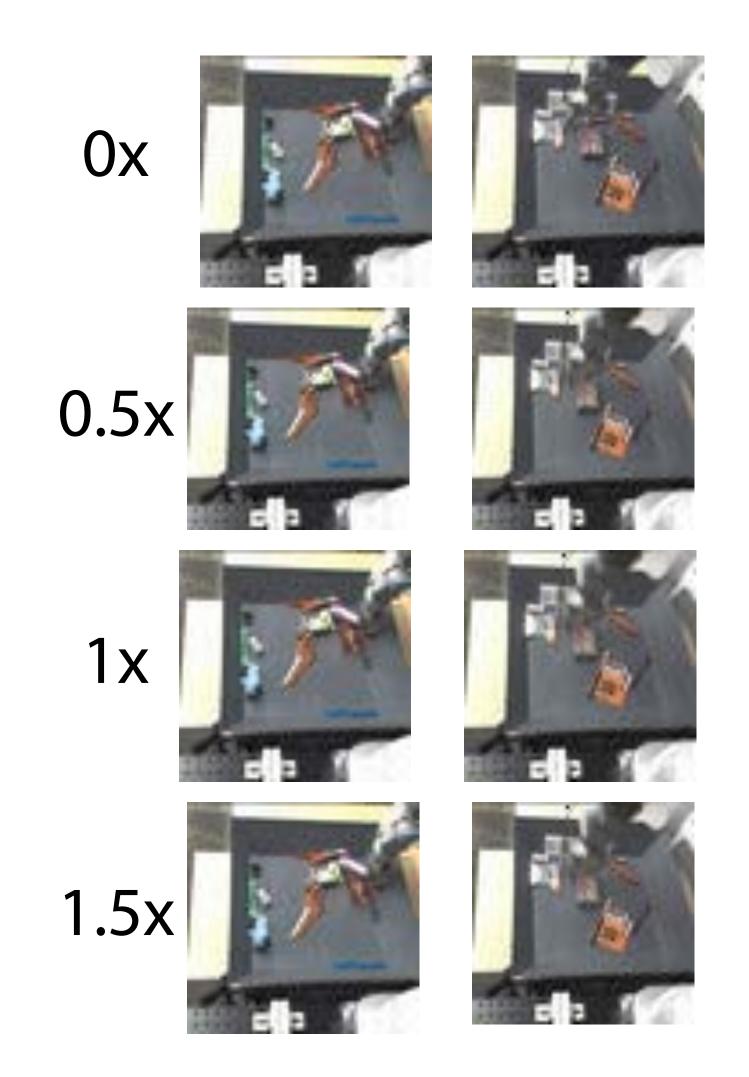
- 1. Sample N potential action sequences
- 2. Predict the future for each action sequence
- 3. Pick best future & execute corresponding action
- 4. Repeat 1-3 to replan in real time

Which future is the best one?

Specify goal by selecting where pixels should move.



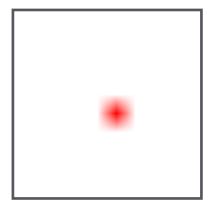
Select future with maximal probability of pixels reaching their respective goals.

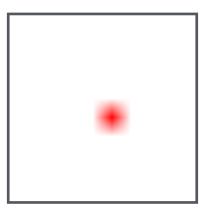


output is the mean of a probability distribution over pixel motion predictions

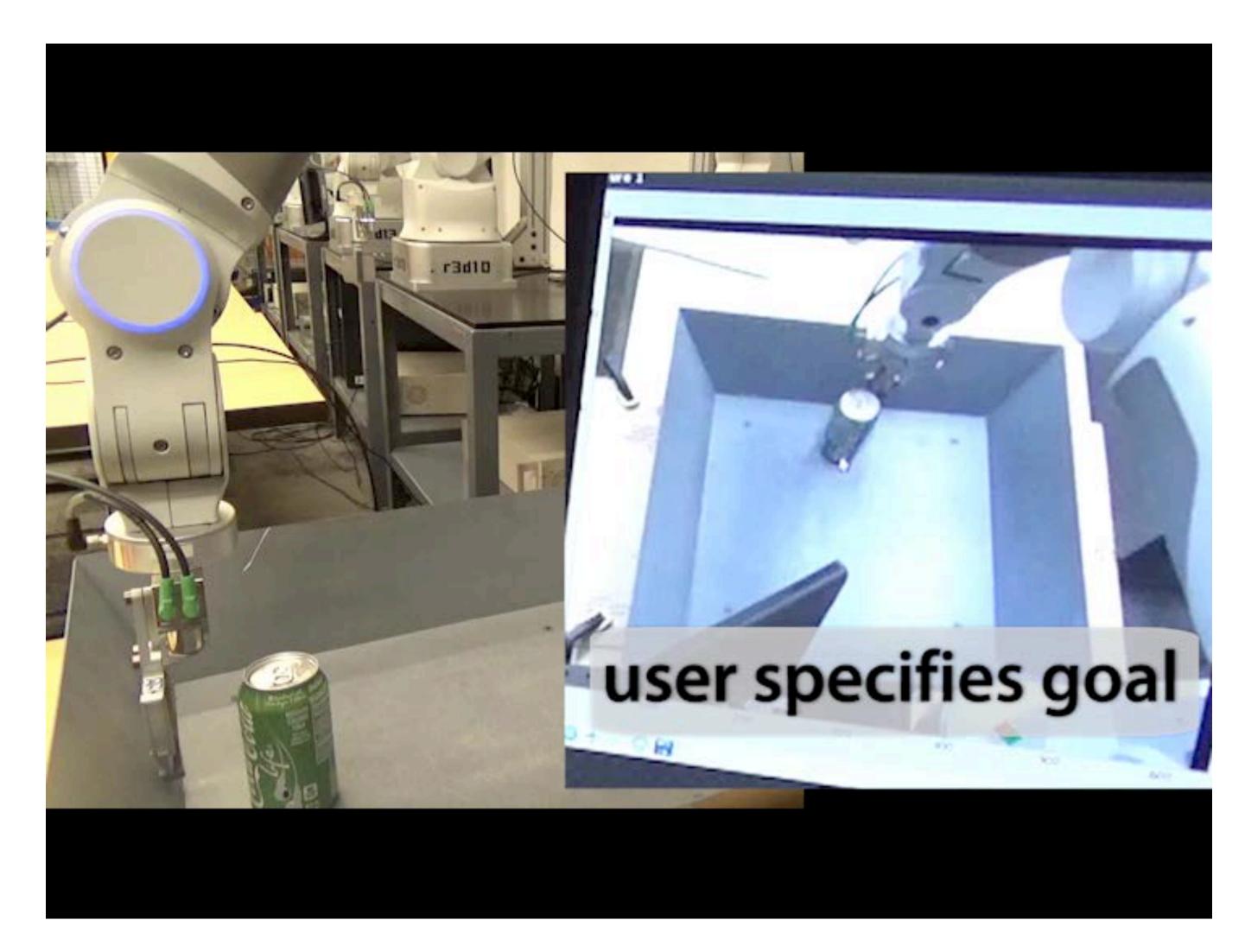
We can predict **how pixels will move** based on the robot's actions







How it works



Does it work?

Results

- translation & rotation

Only human involvement during training is: programming initial motions and providing objects to play with.

Outperforms naive baselines

method

initial pixel position

1) random actions

2) move end-effector to ge

3) move end-effector along

(with replanning)

visual MPC (ours)

mean pixel distance
5.10 ± 2.25
4.05 ± 1.75
3.79 ± 2.66
3.19 ± 1.68
2.52 ± 1.06

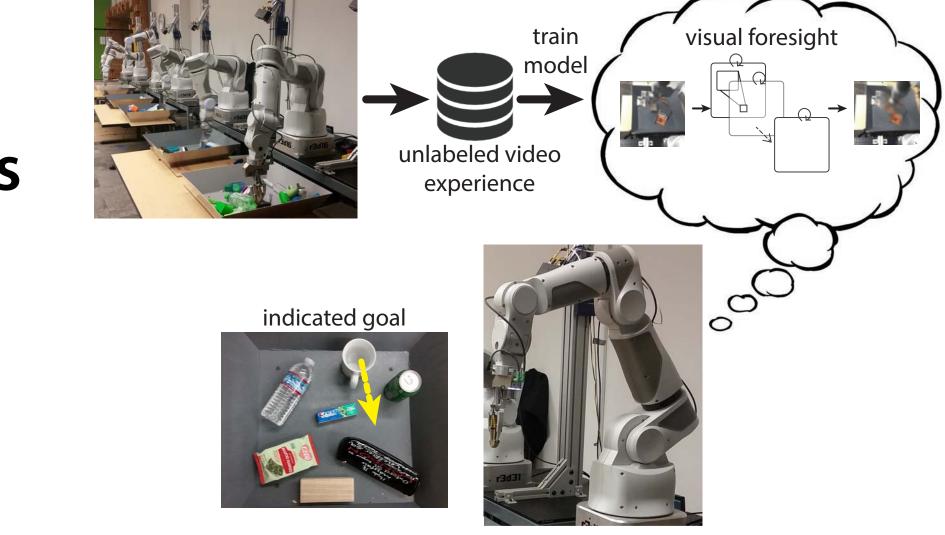
Takeaways

Benefits of this approach

- learn for a wide variety of tasks
- scalable requires minimal human involvement -
- a good way to evaluate video prediction models -

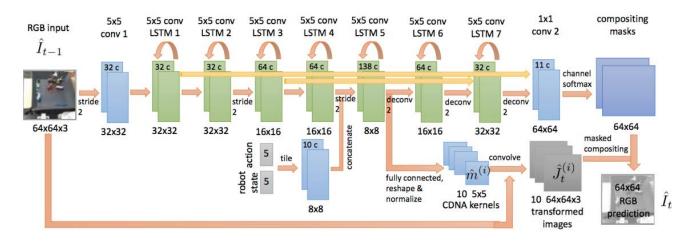
Limitations

- can't [yet] learn complex skills
- compute-intensive at test time
- some planning methods susceptible to adversarial examples



Future challenges in large-scale self-supervised learning

better predictive models



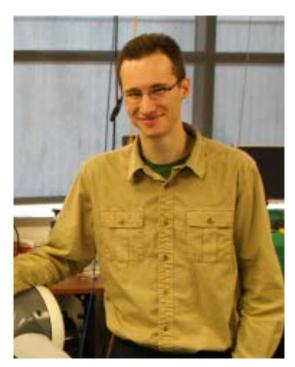
long-term planning

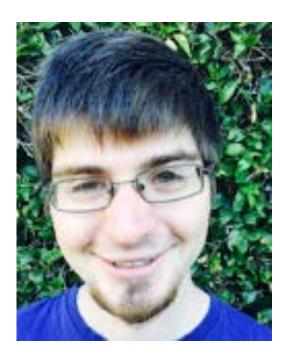
- hierarchy
- stochasticity

task-driven exploration, attention

learn visual reward functions

Collaborators





Sergey Levine

Ian Goodfellow

Bibliography

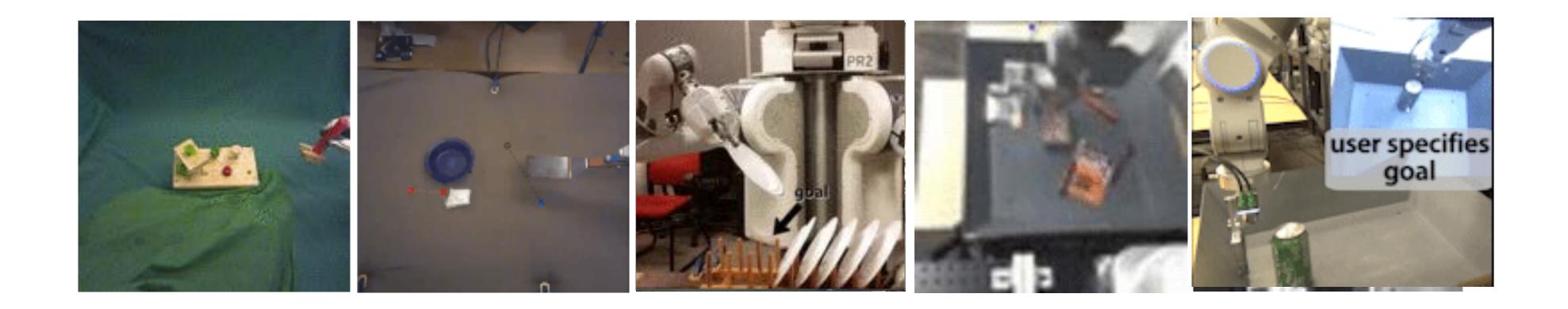
Finn, C., Goodfellow, I., & Levine, S. Unsupervised Learning for Physical Interaction through Video Prediction. NIPS 2016

Finn, C. & Levine, S. *Deep Visual Foresight for Planning Robot Motion*. Under Review, arXiv 2016.

Thanks to...

Vincent Vanhoucke Peter Pastor Ethan Holly Jon Barron

Questions?



<u>cbfinn@eecs.berkeley.edu</u>

All data and code linked at: people.eecs.berkeley.edu/~cbfinn

Collaborators

Sergey Levine

Ian Goodfellow

Questions? <u>cbfinn@eecs.berkeley.edu</u>

Thanks to...

Vincent Vanhoucke Peter Pastor Ethan Holly Jon Barron

All data and code linked at: <u>people.eecs.berkeley.edu/~cbfinn</u>

Thanks!

Takeaway:

Acquiring a cost function is important! (and challenging)

Example Failure Cases

es of failure: misperedictions empute needed cclusions el tracking seed

This is just the beginning...

Can we design the **right** model? stochastic? longer sequences? hierarchical? deeper?

Can we handle **long-term** planning?

Collecting data with a purpose.

