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Generalization in Reinforcement Learning

to object instances

to tasks and environments
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Levine etal.’16
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Generalization in Reinforcement Learning

need data —— scale up

First lesson: human supervision doesn’t scale
(providing rewards, reseting the environment, etc.)



Generalization in Reinforcement Learning

need data —p scale up

where does the supervision come from?
— self-supervision

most deep RL algorithms learn a single-purpose poiic
—» |earn general-purpose model

Evaluating unsupervised methods?
lacking task-driven metrics for unsupervised learning



Data collection - 50k sequences (1M+ frames)

test set with
novel objects

data publicly available for download sites.google.com/site/brainrobotdata



http://sites.google.com/site/brainrobotdata

Train predictive model
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action-conditioned stochastic flow prediction

- feed back model’s predictions for multi-frame prediction
- trained with |, loss



Train predictive model
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Train predictive model
convolutional LSTMs
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action-conditioned  stochastic flow prediction

evaluate on held-out objects

Are these predictions good?




Train predictive model
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Are these predictions good? accurate? useful?



What is prediction good for?

1X 1.5x

action magnitude:




Visual MPC: Planning with Visual Foresight

1. Sample N potential action sequences

2. Predict the future for each action
sequence

3. Pick best future & execute
corresponding action

4. Repeat 1-3 to replan in real time




Which future is the best one?

Specify goal by selecting where pixels should move.

Select future with maximal probability of pixels reaching their respective goals.



We can predict how pixels will move

based on the robot’s actions
0.5x

1X

1.5x

output is the mean of a probability
distribution over pixel motion predictions



How it works

‘._.;./ l

“ user specifies goalj

: l,.‘,.




Does it work?

- evaluation on short
pushes of novel objects

- translation & rotation

Only human involvement during training is:
programming initial motions and providing objects to play with.



Outperforms naive baselines

method mean pixel distance |
initial pixel position 310 2.2
1) random actions 4.05+1.75

| 2) move end-effector to goal 3.791+2.66

3) move end-gﬁ'ector along vector 3194+ 1.68
(with replanning)

visual MPC (ours) | 2.52+1.06




Takeaways

Benefits of this approach

- learn for a wide variety of tasks

- scalable - requires minimal human involvement

- a good way to evaluate video prediction models

unlabeled video
experience

Limitations

- can't [yet] learn complex skills

- compute-intensive at test time

- some planning methods susceptible to

adversarial examples



Future challenges in large-scale
self-supervised learning

better predictive models task-driven exploration, attention
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- hierarchy
- stochasticity learn visual reward functions
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Questions?

cbfinn@eecs.berkeley.edu

All data and code linked at: people.eecs.berkeley.edu/~cbfinn
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1T hanks!

Acquiring a cost function is important! (and challenging)

Takeaway:



s of failure:
yspredictions
mpute needed
clusions

o| tracking
seed

Example Failure Cases




This is just the beginning...

Collecting data with a purpose.
Can we design the right model?
stochastic?
longer sequences?
hierarchical?
deeper?

Can we handle long-term planning?



