Intuitive physics via simulation

Peter Battaglia
DeepMind

Intuitive Physics Workshop

What is intuitive physics?

What is intuitive physics?

Part of our **physical intelligence**:

Our ability to **perceive**, **understand**, and **act** with the everyday environment

"Knowing what is where"

Physical intelligence

Perceive — Understand — Act

Physical intelligence

Perceive → Understand → Act
Inverse rendering

Physical intelligence

Perceive — Understand — Act
Inverse rendering Inverse dynamics

What is intuitive physics?

Perceive — Understand — Act

Inverse rendering Intuitive physics Inverse dynamics

What is intuitive physics?

Perceive — Understand — Act

Inverse rendering Intuitive physics Inverse dynamics

A core system of knowledge about the physical environment

- Provides internal representations of the world
- Can be queried:
 - "What will happen?"
 - "What has happened?"
 - "Why?"
 - "How?"
 - o "What if?"

What makes intuitive physics special?

What makes intuitive physics special?

"Infinite use of finite means"

Combinatorial generalization:

- A few simple rules
- Composable to support a wide range of predictions and inferences

"Infinite use of finite means"

What is the mechanism of human intuitive physics?

"Simulation as an engine of physical scene understanding"

Battaglia, Hamrick, & Tenenbaum (2013) PNAS

What is the mechanism of human intuitive physics?

In which direction?

Different masses

Complex scenes

Infer the mass

Predict fluids

with: Jess Hamrick, Tom Griffiths, Chris Bates, Josh Tenenbaum

@DeepMindAl

What kind of simulator is good for intuitive physics?

It should be:

Flexible

- Handle domains beyond what "Bullet" or "PhysX" can handle
- Even beyond physics: social interaction, other complex systems

Learnable

Can improve with experience

Generally useful

Support predictions, inferences, planning

Structured models

- + Simulation
- Deep Learning

Interaction Networks

"Interaction Networks for Learning about Objects, Relations and Physics" Battaglia, Pascanu, Lai, Rezende, & Kavukcuoglu (2016) NIPS.

@DeepMindAl

Interaction Networks

Interaction Networks

Interaction Networks

n-body

- Gravitational forces
- Object features:
 - -- Position, velocity, mass

Balls

- Rigid collisions
- Object features:
 - -- Pos., vel., mass, scale, shape
- Relation features:
 - -- Elasticity

String

- Springs + rigid collisions
- Object features:
 - -- Pos., vel., mass, scale, shape
- Relation features:
 - Spring: spring coefficient, rest length, damping
 - -- Rigid: elasticity
- Global features:
 - -- Gravitational acceleration

Training and rollouts

Input: Full state(t)

Target: Velocity(t+1)

Rollouts: Predictions back in as inputs, for 1000 time steps

Generalizes:

To systems of different sizes and structures

From next-step predictions to 1000+ step rollouts

Details

Datasets: 1000k training, 200k validation, 200k test

Training epochs: 2000 x 10k mini-batches (100 examples per mini-batch)

Architecture:

- Relation model: 4 x 100 units

- Object model: 1 x 100 units

Noise added to inputs L2 penalty on effects L2 regularization on parameters

Training: n-body - 6 bodies

Generalization: n-body - 3 bodies

@DeepMindAl

Generalization: n-body - 12 bodies

Training: Balls - 6 balls, 4 walls

Generalization: Balls - 3 balls, 4 walls

Generalization: Balls - 9 balls, 4 walls

Training: String - 15 masses, 1 end pinned

Generalization: String - 30 masses, 0 ends pinned

Generalization: String - 30 masses, 2 ends pinned

Dynamics predictions

Global inferences: Potential energy

- Interaction Network far outperforms MLP:
 - -- n-body: Interaction Network 1.4 MSE vs. MLP 19 MSE
 - -- String: Interaction Network 1.1 MSE vs. MLP 425 MSE

Structured scene understanding

• Interaction networks support scene classification on the basis of relational structure (Raposo, Santoro, Barrett, Rascanu, Lillicrap, Battaglia [Under review] ICLR)

Our experiments showed that interaction networks can:

- Classify scenes
- Infer novel scene structures
- Learn object factorizations from input states or images
- Support one-shot learning

Imagination-based metacontroller

- Uses interaction network for model-based decision-making
- See Jessica Hamrick's poster, and talk at 3:30p

Take-homes

- Intuitive physics
 - A core system of knowledge about the physical environment
 - Can be queried: "What will happen?", "What has happened?", ...

@DeepMindAl

Take-homes

- Intuitive physics
 - A core system of knowledge about the physical environment
 - Can be queried: "What will happen?", "What has happened?", ...
- Simulation is a mechanism of human intuitive physics

Take-homes

- Intuitive physics
 - A core system of knowledge about the physical environment
 - Can be queried: "What will happen?", "What has happened?", ...
- Simulation is a mechanism of human intuitive physics
- Interaction networks
 - First general-purpose learnable physics engine
 - Object- and relation-centric reasoning
 - Rich generalization
 - Also supports:
 - Structured scene understanding
 - Model-based decision-making

Integrated models of physical intelligence

Perceive → Understand → Act

Inverse rendering Intuitive physics Inverse dynamics

eg., PhysNet, Galileo

e.g., Interaction Networks, Neural Physics Engine

e.g., Imagination-Based Metacontroller, Learning Billiards

