Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data

Maximilian Karl, Maximilian Soelch, Justin Bayer; Patrick van der Smagt*
Chair of Robotics and Embedded Systems, Department of Informatics,
Technische Universitidt Miinchen, Germany

Abstract

We introduce Deep Variational Bayes Filters (DVBF), a new method for unsuper-
vised learning of latent Markovian state space models. Leveraging recent advances
in Stochastic Gradient Variational Bayes, DVBF can overcome intractable inference
distributions by means of variational inference. Thus, it can handle highly nonlinear
input data with temporal and spatial dependencies such as image sequences without
domain knowledge. Our experiments show that enabling backpropagation through
transitions enforces state space assumptions and significantly improves information
content of the latent embedding. This also enables realistic long-term prediction.

1 Introduction

Estimating probabilistic models for sequential data is central to many domains, such as audio, natural
language or physical plants [, [12][3] 4, [9]. The goal is to obtain a model p(x;.7) that best reflects
a data set of observed sequences x;.7. Recent advances in deep learning have paved the way to
powerful models capable of representing high-dimensional sequences with temporal dependencies,
e.g. [155 120 310

A typical model assumption in systems theory is that the observed sequence x1.7 is generated by a
corresponding latent sequence z;.7. More specifically, state space models assume the latent sequence
to be Markovian, i.e., z; contains all information on the distribution of z; ;. Moreover, the emission
distribution of x, is assumed to be determined by the corresponding z;. In short, we assume a latent
state z; that holds all information available at time step ¢. This results in the following assumptions:
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with u; as current control input and 3, as transition parameters.

We consider modeling a time-discrete, non-linear dynamical system with observations in some space
X C R™, depending on control inputs (or actions) from the space &/ C R™*. Elements of X can
be high-dimensional sensory data such as raw images, or any other state observation. With x; € X,

let x1.7 = (X1, Xa2,...,X7) be a sequence of length T" of observations. Similarly, with u; € U, let
uy.r = (ug,us, ..., ur) be a corresponding sequence of equal length T of control inputs, which we
consider as given. We are interested in derivin a probabilistic model p(x1.7 | us.7).

*Justin Bayer and Patrick van der Smagt are affiliated with Data Lab, Volkswagen Group.
The case without control inputs can be recovered by setting I/ = 0, i.e., not conditioning on control inputs.



Efficient inference of such latent states is only partially solved with state-space models. Under strong
assumptions on the system, one can derive optimal Bayesian filters, such as the classical Kalman
filter [7]] for linear Gaussian models (LGMs). Yet, for less restrictive models, posterior distributions
p(z1.7 | x1.7) are often intractable.

Leveraging a recently proposed estimator based on variational inference, stochastic gradient varia-
tional Bayes (SGVB, [8}[11]), approximate inference of latent variables becomes tractable.

The principle of SGVB has been transferred to time series [1} 13} 6,10} [12]. SomeE] of these models
violate Eq. (2), require inference subroutines, only softly encode the state-space assumptions (IJ) and

() in the KL-divergence or fail to be a mathematically correct lower bound to the marginal data
likelihood.

The contribution of this work is, to our knowledge, the first model that (i) enforces the state-space
model assumptions in latent space allowing for reliable and plausible long-term prediction of the
observable system, (ii) inherits the merit of neural architectures to be trainable on raw data such as
images, audio or other sensory inputs and (iii) scales to large data due to optimization of parameters
based on stochastic gradient descent [2].

2 Deep Variational Bayes Filters

2.1 Reparametrizing the Transition

Previous approaches emphasized good reconstruction, so that the space only contains information
necessary for reconstruction of one time step. Similar to the reparametrization trick from [} [L1]],
we establish gradient paths through transitions over time so that the transition becomes the driving
factor for shaping the latent space, rather than adjusting the transition to the recognition model’s
latent space:

Ziy1 = f(Ztvuta/@t) (3)
Given the stochastic parameters 3,, the state transition is deterministic (which in turn means that by
marginalizing 3,, we still have a stochastic transition). The immediate and crucial consequence is
that errors in reconstruction of x; from z; are backpropagated directly through time. This is different
to the method used in [[10]], where the transition is optimized by minimizing a KL divergence. No
gradient from the generative model is backpropagated through the transitions.

Fig.|lalshows a generic view on our new computational architecture. Fig.|l1b|shows an example for
Eq. (3). a locally linear transition inspired by [12]]. In this case we set

Zt+1 = AtZt —|—Btut—|—tht, t: 17...,7—17 (4)

2.2 The Lower Bound Objective Function

In analogy to VAEs [8| [11]], we now derive a lower bound to the marginal likelihood p(x1.7 | uy.7).
After reflecting the Markov assumptions and in the factorized likelihood and due to the
deterministic transition given 3, , |, we have:
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We now derive the objective function, a lower bound to the data likelihood:
Inp(xy.7 | ur.r) > E% [IHPG(XltT | zl:T)] - KL(‘M(BLT | x1.7,urr) || p(B1.7)) %)
=: Lpver(X1.7, 0, ¢ | ur.)

3 Dynamic Pendulum Experiments

In order to test our algorithm on truly non-Markovian observations of a dynamical system, we
simulated a dynamic torque-controlled pendulum governed by the differential equation

mi?@(t) = —pp(t) + mglsinp(t) + u(t),

3Details about the specific differences can be found in the full version on http://arxiv.org/abs/1605.06432
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(a) General scheme for arbitrary transitions. (b) One particular example of a latent transition: local
linearity.

Figure 1: Left: General architecture for DVBF. Stochastic transition parameters 3, are inferred
via the recognition model, e.g., a neural network. Based on a sampled (3,, the state transition is
computed deterministically. The updated latent state z; is used for predicting x; 1. For details,
see Section@ Right: Zoom into latent space transition (red box in left figure).

m=1=1,u=0.5,¢g = 9.81, via numerical integration, and then converted the ground-truth angle
 into an image observation in X'. The one-dimensional control corresponds to angle acceleration
(which is proportional to joint torque). Angle and angular velocity fully describe the system.

Fig. [2] shows that the strong relation between ground truth and latent state is beneficial for generative
sampling. All plots show 100 time steps of a pendulum starting from the exact same latent state
and not being actuated. The top row plots show a purely generative walk in the latent space on the
left, and a walk in latent space that is corrected by filtering observations on the right. We can see
that both follow a similar trajectory to an attractor. The bottom plot shows the first 45 steps of the
corresponding observations (top row), reconstructions (middle row), and generative samples (without
correcting from observations). Interestingly, DVBF works very well even though the sequence is
much longer than all training sequences (indicated by the red line).

4 Conclusion

We have proposed Deep Variational Bayes Filters (DVBF), a new method to learn state space models
from raw non-Markovian sequence data. DVBFs make use of stochastic gradient variational Bayes to
overcome intractable inference and thus naturally scale to large data sets. In a vision-based experiment
we demonstrated that latent states can be recovered which identify the underlying physical quantities.
The generative model showed stable long-term predictions far beyond the sequence length used
during training.
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(a) Generative latent walk. (b) Reconstructive latent walk.
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(c) Ground truth (top), reconstructions (middle), generative samples (bottom) from identical initial latent state.

Figure 2: (a) Latent space walk in generative mode. (b) Latent space walk in filtering mode. (c)
Ground truth and samples from recognition and generative model. The reconstruction sampling has
access to observation sequence and performs filtering. The generative samples only get access to the
observations once for creating the initial state while all subsequent samples are predicted from this
single initial state. The red bar indicates the length of training sequences. Samples beyond show the
generalization capabilities for sequences longer than during training.
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