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Abstract

Understanding physical phenomena is a key competence that enables humans
and animals to act and interact under uncertain perception in previously unseen
environments. Developmental psychology has shown that such skills are acquired
by infants from observations at a very early stage. We contrast a more traditional
approach of taking a model-based route with explicit 3D representations and
physical simulation by an end-to-end approach that directly predicts stability from
appearance. We explore how such a skill can directly be acquired in a data-driven
way—bypassing explicit simulations at run-time. We present a learning-based
approach based on simulated data that predicts stability of towers comprised of
wooden blocks under different conditions and quantities related to the potential fall
of the towers. We evaluate the approach on synthetic data and compared the results
to human judgments on the same stimuli. Then we extend this approach to reason
about future states of such towers that in turn enables successful stacking.

1 Introduction

Scene understanding requires, among others, understanding of relations between and among the
objects. Many of these relations are governed by the Newtonian laws and thereby rule out unlikely or
even implausible configurations for the observer. Although objects simply obey these elementary
laws, which can very well be captured in simulators, uncertainty in perception makes exploiting these
relations challenging in artificial systems. In contrast, humans understand such physical relations
naturally, which enables them to manipulate and interact with objects in unseen conditions with
ease. We build on a rich set of prior experiences that allow us to employ a type of commonsense
understanding that, most likely, does not involve symbolic representations of 3D geometry or physics
simulation engines. We rather rely on “naïve physics” or “intuitive physics” , serving as a good
enough proxy to make us operate successfully in the real-world.

It has not yet been shown how to equip machines with a similar set of physics commonsense – and
thereby bypassing a strong model representation and a physical simulation. In fact, it has been argued
that such an approach is unlikely due to e.g., the complexity of the problem [1]. Only recently, several
works have revived this idea and reattempted a fully data drive approach to capturing the essence
of physical events via machine learning methods [2, 3, 4, 5]. In contrast, studies in developmental
psychology [6] have shown that infants acquire knowledge of physical events by observation at a
very early age, for example: support, how an object can stably hold another object; collision, how a
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Block Numbers Stacking Depth Block Size

(a) 4B (b) 6B (c) 10B (d) 14B (e) 2D (f) 3D (g) Uni (h) N-Uni
Table 1: Scene parameters in our rendered scenes: number of blocks, stacking depth and block size.

moving object interact with another object. In this work, we focus on support event and construct a
model for machines to predict object stability. We revisit the setup in [1] and explore how to predict
physical stability directly from appearance cues. We approach this problem by synthesizing a large
set of block towers under a range of conditions and then running them through a simulator (only at
training time!) to generate stability labels. We show for the first time that aforementioned stability
can be learned and predicted in a purely data driven way. Further, we successfully guide a robot to
stack blocks based on the stability prediction shown in Figure 1. For more details, please refer to [7].

2 Visual Stability Prediction

2.1 Synthetic Data

Unstable Stable Stable Unstable

Visual Stability Prediction

Manipulation

Figure 1: Our model predicts the stability for
future states and guides robot for placements.

Scene Parameters As in Table 1, we include
scenes with 4, 6, 10 and 14 blocks and vary the
depth of the tower from a one layer setting as 2D to
a multi-layer setting as 3D. The former only allows
a single block along the image plane at all height lev-
els while the latter does not enforce such constraint.
We also include: Uni, the towers with uniform block
size as in [1] and NonUni, towers with varying block
sizes where two of the three dimensions are randomly
scaled with respect to a Normal distribution. In total,
there are 16 groups of 1000 scenes in each group.

Simulation We deliberately decided against col-
ored bricks as in [1] in order to challenge perception
and make identifying brick outlines and configura-
tions more challenging. The lighting is fixed across
scenes and the camera is automatically adjusted so
that the whole tower is centered in the rendered im-
age. The final stability label is automatically decide
by the displacement of blocks during simulation.

2.2 Stability Prediction from Still Images

Research in [1] suggests the combinations of the most salient features in the scenes are insufficient to
capture people’s judgments, yet, contemporary study reveals human’s perception of visual information,
especially some geometric features, like critical angle [8] play an important role in the process.
Regardless of the actual inner mechanism for humans to parse the visual input, it seems clear that
there is a mapping f involving visual input I to the stability prediction P : f : I, ∗ → P , where
∗ denotes other possible information, i.e., the mapping can be inclusive, using it along with other
aspects, like physical constraint or the mapping is exclusive, using visual cues only.

Here we directly predicts the physical stability from visual input. We use deep convolutional neural
networks as they have shown great success on image classification and capable of adapting to various
tasks through re-training/fine-tuning. We interchange the image classes labels with the stability labels
so that the network can learn “stability salient” features by fine-tuning the pre-trained VGG Net[9].

Intra-Group Experiment We train and test on the scenes by varying only one type of scene
parameter at a time: Number of Blocks , a consistent drop in performance can be observed with more
blocks in the scene; Block Size , the performance generally decreases for varying block size over
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Figure 2: Model interpretation: (left) pipeline, (right) example visualizations.
uniform block size; Stacking Depth , for simple scenes, prediction accuracy increases when moving
from 2D stacking to 3D but vise versa for the complex scene.

Cross-Group Experiment To see how the learned model transfers across scenes with different
complexity, we divide the scene into: a simple scene group for scenes with 4 and 6 blocks and a
complex scene for scenes with 10 and 14 blocks. We investigate: train on simple scenes and predict
on complex scenes and vise versa. For the former direction, it gets 69.9%, which is significantly
better than random guess at 50%, and for the latter we observe significant performance boost which
can be explained by the richer feature learned from the complex scenes with better generalization.

Generalization Experiment Similar to human’s prediction in the task, we use training images
from all different scene groups and test on any groups. While the performance exhibits similar trend
to the intra-group, namely increasing recognition rate for simpler settings and decreasing rate for
more complex settings, there is a consistent improvement over the intra-group for individual groups.
Together with the result in the cross-group, it suggests a strong generalization capability of the model.

Human Subject Test 8 human subjects are recruited to predict stability for give scene images. Due
to large number of test data, we sample images from different scene groups for human subject test.
Each subject is presented with a set of captured images from the test split. Each set includes 96
images where images cover all 16 scene groups with 6 scene instances per group. For each scene
image, subject is required to rate the stability from Definitely Unstable to Definitely Stable.

For simple scenes, human can reach close to perfect performance while for complex scenes, the
performance drops significantly to around 60%. The image-based model outperforms human in most
scene groups: while showing similar trends in performance with respect to different scene parameters,
it is less affected by a more difficult scene parameter setting.

Model Interpretation We apply the technique from [10] to visualize the learned discriminative
image regions from CNN for individual category. We investigate discriminative regions for unstable
predictions to see if the model can spot the weakness in the structure. We compute the optical flow
magnitude between the frame before the physics engine is enabled and afterwards as a coarse ground
truth for the structural weakness, assuming the collapse motion starts from such weakness. Though
not universal among the unstable cases, we do find significant positive cases showing high correlation
between the activation regions in CAM for unstable output and the regions where the collapse motion
begins. The pipeline and example visualizations are shown in Figure 2.

3 From Visual Stability Test to Manipulation

We set up a testbed where a Baxter robot stacks one Kapla block on a given block structure over 6
scenes without breaking their stability. We enforce some constraints for simplicity: (1) the structure
is restricted to be single layer; (2) the block to be put is limited to {vertical, horizontal} and assumed
to be held in robot’s hand before placement; (3) the block has to be placed on the top-most horizontal
surface (stacking surface) of the structure; (4) the depth of the structure is calibrated so only the
horizontal and vertical displacements to the stacking surface are to be decided.

3.1 Prediction on Real World Data

Considering the significant difference between the synthesized and real world data, we directly apply
the model trained on the RGB images to predict stability on the real data in a pilot study, but only
got results close to random guessing. Hence we decided to train the visual-stability model on the
binary-valued foreground mask on the synthesized data after observing comparable results and deal
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Id. 1 2 3 4 5 6

Scene
Mani. 9/10 5/6 3/4 4/5 4/7 0/4

Table 2: Manipulation results: #{successful placements by robot}/#{ground truth stable placements}
with the masks at test time for the real scenes. For each scene, an captured image is first converted
to a foreground mask via background subtraction. The top-most horizontal boundary is detected as
the stacking surface and then used to generate candidate placements: the surface is divided evenly
into 9 horizontal candidates and 5 vertical candidates, resulting in overall 84 candidates. Afterwards,
the candidates are put to the visual-stability model for stability prediction. Each candidate’s actual
stability is manually tested and recorded as ground truth. The model trained with synthetic data is
able to predict with overall accuracy of 78.6% across different candidates in real world.

3.2 Manipulation Test

When the model predicts a given candidate placement as stable, the robot will execute a routine
to place the block (Figure 1) with 3 attempts. We count the execution as a success if any of the
attempt works. The manipulation success rate is defined as the ratio between the number of successful
placements made by the robot and all ground truth stable placements. The manipulation performance
(Table2) is generally good across most of the scenes except for the 6-th scene where the classifier
predicts all candidates as unstable hence no attempts have been made by the robot.

4 Summary

We propose a model to predict physical stability directly from visual input bypassing explicit 3D
representations and physical simulation. The model is evaluated on towers with great variations. To
further understand the results, we conduct a human subject study on a subset of our synthetic data,
showing our model achieves comparable result to humans. We also investigate the discriminative
image regions found by the model and spot correlation between such regions and initial collapse area
in the structure. Finally, We apply our approach to a block stacking setting, showing it can guide a
robot for placing new blocks by predicting the stability of future states.
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