
Machine Solver for Physics Word Problems

Megan Leszczynski
Cornell University

Ithaca, NY 14853 USA
mel255@cornell.edu

José Moreira
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598 USA
jmoreira@us.ibm.com

Abstract

We built a machine solver for physics word problems involving the free falling
motion of an object under constant acceleration of gravity. Our solver consists of
two long short-term memory recurrent neural networks and a numerical integrator.
The labeler neural network labels each word of the problem, identifying the
physical parameters and the question part of the problem. The classifier neural
network identifies what is being asked in the question. Using the information
extracted by both networks, a numerical integrator computes the solution. We
observe that the classifier is resilient to errors made by the labeler, which does
a better job of identifying the physics parameters than the question. Training,
validation and test sets of problems are generated from a grammar, with validation
and test problems structurally different from the training problems. The overall
accuracy of the solver on the test cases is 99.8%.

1 Problem Specification

The machine solves word problems involving the physical system of Figure 1(a). Movement of the
particle starts at time t = 0, with an initial position defined by (d1, d2) and initial velocity (v1, v2).
The time behavior of the particle can be represented by the dynamical system shown in Figure 1(b).
The state vector ~x(t) = [x1(t), x2(t), ẋ1(t), ẋ2(t)]

T consists of two positions and two velocities
and its derivative depends only on itself and the acceleration of gravity. Combined with the initial
condition ~x(0) = [d1, d2, v1, v2]

T , the differential equation produces a unique solution.

 ẋ1(t)
ẋ2(t)
ẍ1(t)
ẍ2(t)

 =

 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ·

 x1(t)
x2(t)
ẋ1(t)
ẋ2(t)

+

 0
0
0
−g


 x1(0)

x2(0)
ẋ1(0)
ẋ2(0)

 =

 d1
d2
v1
v2


(a) (b)

Figure 1: Two-dimensional space with a free falling particle (a). Displacements d1 and d2 define
the initial position of the particle; v1 and v2 define its initial velocity. Gravity produces a constant
downward acceleration g. Behavior of the particle is defined by the dynamical system shown in (b).

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



2 Machine Solver

The top-level system block diagram is shown in Figure 2. The data flow through the labeler and
classifier neural networks is shown in Figure 3. We used TensorFlowTM1 to develop the neural
network models for both labeler and the classifier [1].

Figure 2: The first step from word problem to dynamical system is accomplished via neural networks.
The second step from dynamical system to solution is achieved with a numerical integrator.

Figure 3: The word problem passes through two RNNs to produce the dynamical system form.

The labeler is an LSTM network with one hidden layer of ten units, following the model described
in [2], Chapter 10, Figure 10.3. Figure 4 shows an example of the data flow through the labeler. The
input to the labeler is the full problem statement and the output is a label for each word, identifying
the parameters to the dynamical system and the question part of the problem. The words are input
into the labeler via an embedding that is randomly initialized and trained simultaneously with the
weights and biases. The weights are also randomly initialized and the biases are initialized to zero.
To limit the exploration of the parameter space, we set the dimension of the embedding to equal the
number of hidden units. We trained the labeler with TensorFlow’s Adam Optimizer [4], an initial
learning rate of 0.1, and a mini-batch size of 100 word problems. (The network architecture and
hyperparameters were chosen after a limited grid search.)

Figure 4: Example of input to labeler with expected output. A label is associated with each word,
where O indicates other, or a word not needed for the dynamical system translation.

The classifier is an LSTM network with one hidden layer of 1,000 units. An example of the data flow
through the classifier is shown in Figure 5. Only the question part of the word problem is run through
the classifier. As with the labeler, we encode the words of the sequence into word embeddings,
matching the dimension of the word embedding to the number of hidden units, and training them
with the weights and biases. Unlike the labeler, there is only one output, the type of question, for
each sequence. For more information see Chapter 10, figure 10.5 of [2] for an illustration. The
classifier is trained with TensorFlow’s Gradient Descent Optimizer, an initial learning rate of 0.5, and
a mini-batch size of 100 questions. A grid search was used to choose these hyperparameters.

The numerical integrator computes the evolution over time of the dynamical system shown in
Figure 1(b). As input it receives the initial conditions, the value of g, and the type of question

1TensorFlow is a trade mark of Google Inc.

2



Figure 5: Example of input to classifier with expected output. Symbol x1 refers to horizontal
displacement and symbol x2 refers to vertical displacement.

extracted from the labeler and the classifier. Using SciPy’s ordinary differential equation integrator, a
table of values representing the system’s state to the point that the object hits the ground is iteratively
constructed. The numerical solution is refined to a precision of 0.001 (one part in a thousand), based
on the type of the question. For example, if the question is about the maximum height, we produce a
first instance of the table, find the maximum height in that table, and then search for the maximum
around that value with increased precision, repeating until we reach the desired precision. Finally, the
question type is used to determine which value from the table to output from the solver.

The word problems in the training, validation, and test sets are automatically generated following a
grammar. The grammar allows for mixed units (SI and US customary). The grammar also permits
the initial conditions to be exposed in multiple ways. For instance, an angle value and speed will be
provided in some problems, from which the solver would need to calculate the initial vertical velocity,
whereas in other problems the vertical velocity can be stated explicitly. Using mixed units and various
ways of providing information about each initial condition allows us to increase the complexity of
the problems within the scope of the dynamical system. The grammar also ensures that the training
set is disjointed from the validation and test sets, particularly in structure. This is vital in assessing
the ability of the trained networks to generalize. Figure 6 shows examples of generated problems.

Assume the acceleration due to gravity is 85 ft/s2. A ping pong ball is dropped from the top of a 8
story building, where each story is 89 m. What is the maximum speed the ping pong ball obtains?

A chair is launched at a speed of 51 mph and an angle from the horizontal of 28 degrees. Let the
acceleration due to gravity on Planet Watson be 98 m/s2. How much time has passed when it
reaches its maximum height?

Figure 6: Examples of generated problems following the grammar.

3 Experimental Results

The datasets consisted of 7,000 word problems for training, 2,000 word problems for validation, and
1,000 word problems for test. The labeler and classifier reached 100% accuracy on the training set by
the end of the first epoch. The epoch was broken down into fractions as the training accuracy was
evaluated every seven mini-batches of 100 problems.

The accuracy on the test set after the labeler and classifier have been independently trained are shown
in Table 1. The accuracy of the combined RNN system amounts to an overall accuracy of 99.8%.
The labeler achieves 100% accuracy on predicting the non-question labels and incurs a small error on
predicting the beginning and end of the question. As a result, the question that is extracted based on
the labeler’s predictions does not always match the true question. However, based on the classifier’s
accuracy of 99.8%, the classifier is often resilient to the errors that labeler makes in extracting the
question. While the labeler incorrectly extracts ninety-one questions, the classifier only incorrectly
classifies two questions from a test set of 1,000 word problems. See Figure 7 for examples.

4 Conclusions

We have developed a machine solver for word problems on the physics of a free falling object in
two-dimensional space with constant acceleration of gravity. The solver has three main components.

3



Table 1: Accuracy on the test set of word problems. The combined RNN system accuracy is based on
correctly identifying all dynamical system parameters and question type.

Labeler
Overall Non-question Question Classifier Combined RNN System
0.909 1.000 0.909 0.998 0.998

(1) Labeler input: Let the acceleration due to gravity on Planet Watson be 65 ft/sˆ2. A ping pong
ball is released from the top of a 3 story building, where each story is 79 m. What is the maximum
speed the ping pong ball obtains?

Labeler output / classifier input: What is the maximum speed the
Classifier output: (speed : max)
Expected output: (speed : max)

(2) Labeler input:Assume the acceleration due to gravity is 49 m/sˆ2. A ping pong ball is
launched at a speed of 35 m/s and an elevation of 88 degrees. What is the magnitude of the velocity
of the ping pong ball just before it touches the ground?

Labeler output / classifier input: What is the magnitude of the velocity of the
Classifier output: (speed : max)
Expected output: (speed : x2=0)

Figure 7: Examples of incorrectly extracted questions from the labeler and the classifier’s response to
them. In both cases, the question is cut short. The classifier still makes the correct the classification
for the first case, but fails for the second case.

The labeler labels each word of the problem to identify the parameters of a canonical dynamical
system that describes the time evolution of the object, and the part of the problem that corresponds to
the question being asked. The classifier classifies the question part. Finally, an integrator is used to
solve the dynamical system, producing a numerical answer to the problem.

A grammar-based generator is used to produce the training, validation and test set of problems for the
neural networks. The grammar is specified so that the validation and test problems are structurally
different from the training problems. We used a total of 10,000 generated problems, partitioned into
7,000 for training, 2,000 for validation and 1,000 for testing.

Both neural networks achieved almost perfect training (as measured in accuracy with the training set)
by the end of the first epoch of training. When measured against the test set of 1,000 problems, the
dynamical system parameters are correctly identified in all of them. The question part is precisely
identified in 909 cases, but because the classifier can work with partial questions, in the end all but
two questions are classified correctly. Therefore, the combined accuracy of the two neural networks,
for the purpose of solving the physics problems, is 99.8%. We did have to do a systematic search
over the space of neural networks to find the right architecture (number of layers and units per layer)
and hyperparameters (learning rate) for the networks to behave so well.

References
[1] Martı́n Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems, 2015. Software available from http://tensorflow.org.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in preparation for
MIT Press. Book available from http://www.deeplearningbook.org, 2016.

[3] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In EMNLP, pages 523–533, 2014.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2014.

4


	Problem Specification
	Machine Solver
	Experimental Results
	Conclusions

