
Label-Free Supervision of Neural Networks with
Physics and Domain Knowledge

Russell Stewart , Stefano Ermon
Department of Computer Science, Stanford University

{stewartr, ermon}@cs.stanford.edu

Abstract

In many machine learning applications, labeled data is scarce and obtaining more
labels is expensive. We introduce a new approach to supervising neural networks
by specifying constraints that should hold over the output space, rather than direct
examples of input-output pairs. These constraints are derived from prior domain
knowledge, e.g., from known laws of physics. We demonstrate the effectiveness of
this approach on real world and simulated computer vision tasks. We are able to
train a convolutional neural network to detect and track objects without any labeled
examples.

Introduction

Applications of machine learning are often encumbered by the need for large amounts of labeled
training data. Neural networks have made large amounts of labeled data even more crucial to
success [8]. Nonetheless, we observe that humans are often able to learn without direct examples,
opting instead for high level instructions for how a task should be performed. We ask whether a
similar principle can be applied to teaching machines; can we supervise networks without individual
examples by instead describing only the structure of desired outputs?

Unlike other forms of unsupervised learning, such as Autoencoders, we explicitly provide the
semantics of the hidden variables we hope to discover. We train without labels by learning from
constraints [13]. Intuitively, algebraic and logical constraints are used to encode structures and
relationships that are known to hold because of prior domain knowledge. The priary contribution
of this work is to demonstrate how encoding physics constraints may be used to supervise neural
networks across practical computer vision tasks.

Problem Setup

In a traditional supervised learning setting, we are given a training set D = {(x1, y1), · · · , (xn, yn)}
of n training examples. Each example is a pair (xi, yi) formed by an instance xi ∈ X and the
corresponding output (label) yi ∈ Y . The goal is to learn a function f : X → Y mapping inputs
to outputs. To quantify performance, a loss function ` : Y × Y → R is provided, and a mapping is
found via

f∗ = arg min
f∈F

n∑
i=1

`(f(xi), yi) (1)

where the optimization is over a pre-defined class of functions F (hypothesis class). In our case,
F will be (convolutional) neural networks parameterized by their weights. The loss could be for
example `(f(xi), yi) = 1[f(xi) 6= yi].

While one clearly needs labels, y, to evaluate f∗, labels may not be necessary to discover f∗. If
prior knowledge informs us that outputs of f∗ have other unique properties among functions in F ,

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Figure 1: As the pillow is tossed, the height forms a parabola over time. We exploit this structure to
independently predict the pillow’s height in each frame without providing labels.

we may use these properties for training rather than direct examples y. Specifically, we consider
an unsupervised approach where the labels yi are not provided to us, and optimize for a necessary
property of the output, g instead. That is, we search for

f̂∗ = arg min
f∈F

n∑
i=1

g(xi, f(xi)) + R(f) (2)

The process of designing the loss g and the regularization term R is a form of supervision, and can
require a significant time investment. But unlike hand labeling, it does not increase proportional to
the size of the data, |D|, and can be applied to new data sets often without modification.

Experiments

We record videos of a pillow being thrown across the field of view. Our goal is to obtain a regression
network predicting the height of the pillow in an image. We will train the network as a structured
prediction problem operating on a sequence of N images to produce a sequence of N heights,(
Rheight×width×3)N → R

N , and each piece of data xi will be a vector of images, x. Rather than
supervising our network with direct labels, y ∈ RN , we instead supervise the network to find an
object obeying the elementary physics of free falling objects.

An object acting under gravity will have a fixed acceleration of a = −9.8m/s2, and the plot of the
object’s height over time will form a parabola:

yi = y0 + v0(i∆t) + a(i∆t)2

This equation provides a necessary constraint, which the correct mapping f∗ must satisfy. We thus
train f by making incremental improvements in the direction of better satisfying this equation.

Given any trajectory of N height predictions, f(x), we fit a parabola with fixed curva-
ture to those predictions, and minimize the resulting residual. Formally, we specify a =
[a∆t2, a(2∆t)2, . . . , a(N∆t)2] and set

ŷ = a + A(ATA)−1AT (f(x)− a) (3)

2

where

A =

∆t 1
2∆t 1
3∆t 1

...
...

N∆t 1

The constraint loss is then defined as

g(x, f(x)) = g(f(x)) =

N∑
i=1

|ŷi − f(x)i|

where we note that the vector ŷ from (3) is a function of the predictions f(x), rather than ground
truth labels. Because g is differentiable almost everywhere, we can optimize equation (2) with SGD.
Surprisingly, we find that when combined with existing regularization methods for neural networks,
this optimization is sufficient to recover f∗ up to an additive constant C (specifying what object
height corresponds to 0). Qualitative results from our network applied to fresh images after training
are shown in Fig. (1)

Training details
Our data set is collected on a laptop webcam running at 10 frames per second (∆t = 0.1s). We fix
the camera position and record 65 diverse trajectories of the object in flight, totalling 602 images.
For each trajectory, we train on randomly selected intervals of N = 5 contiguous frames. Images are
resized to 56× 56 pixels before going into a small, randomly initialized 4 layer neural network with
no pretraining. We train with a learning rate of 0.0001 for 4,000 iterations.

Evaluation
For evaluation, we manually labeled the height of our falling objects in pixel space. Labeling the true
height in meters requires knowing the object’s distance from the camera, so we instead evaluate by
measuring the correlation of predicted heights with ground truth pixel measurements. Our network
yields 90.1% correlation. For comparison, we also trained a supervised network on the labels to
directly predict the height of the object in pixels. This network achieved a correlation of 94.5%,
although this task is somewhat easier as it does not require the network to compensate for the object’s
distance from the camera.

This experiment demonstrates that one can teach a neural network to extract object information from
real images by writing down only the equations of physics that the object obeys. Further experiments
can be found in the full publication at https://arxiv.org/abs/1609.05566.

Related Work

In this work, we have presented a new strategy for incorporating pysics domain knowledge in
computer vision tasks. The network in our experiment learns without labels by exploiting high level
instructions in the form of constraints.

Constraint learning is a generalization of supervised learning that allows for more creative methods
of supervision. For example, multiple-instance learning as proposed by [3] allows for more efficient
labeling by providing annotations over groups of images and learning to predict properties that
hold over at least one input in a group, rather than providing individual labels. In rank learning,
labels may given as orderings between inputs with the objective being to find an embedding of
inputs that respects the ordering relation [6]. Various types of constraints have also been used
extensively to guide unsupervised learning algorithms, such as clustering and dimensionality reduction
techniques [9, 1, 14, 4]. Natural language processing has seen many successful applications of
constraint learning [10, 2, 5], and the recent work of [12] has provided a fresh perspective on the idea
of learning with labeling functions, rather than labels, in the form of Data Programming.

The use of constraint learning for neural networks provides further advantages, as reductions in
labeling effort are more impactful when feature engineering is also not required. Applications of
constraint learning to neural networks have been suggested by several recent works. In [7], deep

3

https://arxiv.org/abs/1609.05566

networks were trained to predict sentiment labels of individual sentences in a review set based on
constraints for the final review score. [11] and [15] trained deep convolutional neural networks to
construct high level compressed embeddings of images without using labels. In [11], constraints such
as invariance of embeddings to image rotations, high entropy outputs, and high standard deviation
outputs were encoded to learn these embeddings. Our experiments build on these ideas in a context
where we can use prior knowledge such as physical dynamics to further constrain the output’s
semantics.

Conclusion

We have introduced a new method for using physics and other domain constraints to supervise neural
networks. By freeing the operator from collecting labels, our small scale experiments show promise
for the future of training neural networks with weak supervision.

References
[1] S. Basu, I. Davidson, and K. Wagstaff. Constrained clustering: Advances in algorithms, theory,

and applications. CRC Press, 2008.

[2] M.-W. Chang, L. Ratinov, and D. Roth. Guiding semi-supervision with constraint-driven
learning. In Annual Meeting-Association for Computational Linguistics, volume 45, 2007.

[3] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem
with axis-parallel rectangles. Artificial intelligence, 89(1), 1997.

[4] S. Ermon, R. Le Bras, S. K. Suram, J. M. Gregoire, C. P. Gomes, B. Selman, and R. B. van
Dover. Pattern decomposition with complex combinatorial constraints: Application to materials
discovery. In AAAI, 2015.

[5] K. Ganchev, J. Gillenwater, B. Taskar, et al. Posterior regularization for structured latent variable
models. Journal of Machine Learning Research, 11(Jul), 2010.

[6] T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.

[7] D. Kotzias, M. Denil, N. de Freitas, and P. Smyth. From group to individual labels using deep
features. In ACM SIGKDD, 2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

[9] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.

[10] P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in exponential families. In
Proceedings of the 26th annual international conference on machine learning. ACM, 2009.

[11] K. Lin, J. Lu, C.-S. Chen, and J. Zhou. Learning compact binary descriptors with unsupervised
deep neural networks.

[12] A. Ratner, C. De Sa, S. Wu, D. Selsam, and C. Ré. Data programming: Creating large training
sets, quickly. arXiv preprint arXiv:1605.07723, 2016.

[13] I. Shcherbatyi and B. Andres. Convexification of learning from constraints. arXiv preprint
arXiv:1602.06746, 2016.

[14] W. Zhi, X. Wang, B. Qian, P. Butler, N. Ramakrishnan, and I. Davidson. Clustering with
complex constraints-algorithms and applications. In AAAI, 2013.

[15] B. Zhuang, G. Lin, C. Shen, and I. Reid. Fast training of triplet-based deep binary embedding
networks. arXiv preprint arXiv:1603.02844, 2016.

4

	Introduction
	Problem Setup

	Experiments
	Training details
	Evaluation

	Related Work
	Conclusion

