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1 Introduction

Manipulation of deformable objects, such as ropes and cloth, is an important but challenging problem
in robotics. Open-loop strategies for deformable object manipulation are often ineffective, since the
material can shift in unpredictable ways [4]. Perception of cloth and rope also poses a major challenge,
since standard methods for estimating the pose of rigid objects cannot be readily applied to deformable
objects for which it is difficult to concretely define the degrees of freedom or provide suitable training
data [7]. Despite the numerous industrial and commercial applications that an effective system for
deformable object manipulation would have, effective and reliable methods for such tasks remain
exceptionally difficult to construct. Previous work on deformable object manipulation has sought to
use sophisticated finite element models [4, 2], hand-engineered representations [5, 11, 8], and direct
imitation of human-provided demonstrations [6, 10]. Direct model identification for ropes and cloth
is challenging and brittle, while imitation of human demonstrations without an internal model of the
object’s dynamics is liable to fail in conditions that deviate from those in the demonstrations.

In this work, we instead propose a learning-based approach to associate the behavior of a deformable
object with a robot’s actions, using self-supervision from large amounts of data gathered autonomously
by the robot. In particular, the robot learns a goal-directed inverse dynamics model: given a current
state and a goal state (both in image space), it predicts the action that will achieve the goal. To handle
high-dimensional visual observations, we employ deep convolutional neural networks for learning
the inverse dynamics model. Once this model is learned, our method can use human-provided
demonstrations as higher level guidance. In effect, the demonstrations tell the robot what to do, while
the learned model tells it how to do it, combining high-level human direction with a learned model of
low-level dynamics. Figure 1 shows an overview of our system.

2 Method

We use a Baxter robot for all experiments described in the paper. The robot interacts with a rope
placed on a table in front of it using only one arm. The arm has a gripper attached with two degrees
of freedom (one rotational and one for closing/opening the two fingers). One end of the rope is tied
to a clamp attached to the table. The robot receives visual inputs from the RGB channel of a Kinect
camera. The interaction of the robot with the rope is constrained to a single action primitive consisting
of two sub-actions - pick the rope at location (x1, y1) and drop the the rope at location (x2, y2), where
(x1, y1, x2, y2) are pixel coordinates in the input RGB image. It is possible to manipulate the rope
into many complex configurations using just this action primitive.

The robot collects data in a self-supervised manner by randomly choosing pairs of pick and drop
points in the image. If we randomly choose a point on the image, then most points will not be on
the rope and the data collection will be inefficient. Instead, we use the point cloud from the Kinect
camera to segment the rope and then choose a pick point uniformly at random from this segment.
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Figure 1: We present a system where the robot is capable of manipulating a rope into target configu-
rations by combining a high-level plan provided by a human with a learned low-level model of rope
manipulation. A human provides the robot with a sequence of images recorded while he manipulates
the rope from an initial to goal configuration. The robot uses a learnt inverse dynamics model to
execute actions to follow the demonstrated trajectory. The robot uses a convolutional neural network
(CNN) for learning the inverse model in a self-supervised manner using 30K interactions with the
rope with no human supervision. The red heatmap on each image of the robot’s execution trace shows
the predicted location of the pick action and the blue arrow shows the direction of the action. This
image is best seen in color.

Once the pick point is chosen, the drop point can be obtained as a displacement vector from the
pick point. We represent this displacement vector by the angle θ ∈ [0, 2π) and length l ∈ [1, 15] cm.
Values of θ and l are uniformly and randomly sampled from their respective ranges to obtain the drop
point. After choosing the points, the robot executes the following steps: (1) grasp the rope at the
pick point, (2) move the arm 5 cm vertically above the pick point, (3) move the arm to a point 5 cm
vertically above the drop point, (4) release the rope by opening the gripper.

Our goal is to have the robot watch a human manipulate a rope and then reproduce this manipulation
on its own. The human provides a demonstration in the form of a sequence of images of the rope
in intermediate states toward a final goal state. Let V = {It|t = 1..T} represent this sequence. The
task of the robot is to execute a series of actions for transforming I1 into I2, then I2 into I3 and so on
until the end of the sequence. A model that predicts the action that relates a pair of input states is
called an inverse dynamics model and is mathematically described in equation 1 below

It+1 = F (It, ut), (1)

where It, It+1 are visual observations of the current and next states and ut is the action. Following
the works of [1, 9], we use deep convolutional neural networks to learn the inverse model.

Our neural network architecture shown in Figure 2 consists of two streams that transform each of the
two input images into a latent feature space, x. The architecture of these streams is similar to AlexNet,
and the weights of the streams are tied. The latent representations of the two images, (xt, xt+1), are
concatenated with each other and fed into a networks of two fully connected layers of 200 units to
predict the action. For the purpose of training, we turn action prediction into a classification problem
by discretizing the action space. The action is parameterized as a tuple (pt, θt, lt), where pt is the
action location, θt is the action direction and lt is the action length. Each dimension of this tuple
is independently discretized. The action location is discretized onto a 20× 20 spatial grid, and the
direction and length are discretized into 36 and 10 bins respectively.

For transforming the rope from a starting configuration into a desired configuration, the robot receives
as input the sequence of images depicting each stage of the manipulation performed by a human
demonstrator to achieve the same desired rope configuration. Let the sequence of images received
by the robot as inputs be, V = {It|t ∈ (1, T )}. The initial configuration I1, IT are images of the
rope in the initial and goal configurations. The robot first inputs the pair of images (I1, I2) into the
learnt inverse model and executes the predicted action. Let Î2 be the visual state of the world after
the action is executed. The robot, then inputs (Î2, I3) in the inverse model and executes the output
action. This process is repeated iteratively for T time steps. In some cases the robot does not predict
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Figure 2: We use a convolutional neural network (CNN) to build the inverse dynamics model. The
input to the CNN is a pair of images (It, It+1) and the output is the action that can transform
the rope configuration in It into the configuration in It+1. The action is parameterized as a tuple
(pt, θt, lt), where pt, θt, lt is the action location, direction and length respectively. p̂t, θ̂t, l̂t denote
the predictions.

the poke location on the rope. For these cases we use the rope segmentation information to find the
point on the rope that is closest to predicted pick location, to execute the pick primitve.

3 Evaluation

We evaluate the performance of the robot by measuring the distance between the rope configurations
in the sequence of images provided as the demonstration and the sequence of images achieved by the
robot after executing the series of actions using the inverse dynamics model. The distance metric
uses the segmented point cloud of the rope to measure the distance between two rope configurations
using the thin plate spline robust point matching (TPS-RPM) method [3].

We compare the performance of our method against a hand-engineered baseline. In a fashion similar
to the proposed method, our baseline method takes as input the sequence of images from the human
demonstration. In order to predict the action that will transform the rope from the configuration in It
into the configuration in It+1, we first segment the rope in both the images using point cloud data.
We then use TPS-RPM to register the segmented point clouds. In the absence of a model of rope
dynamics, an intuitive way to transform the rope into a target configuration is to pick the rope at the
point with the largest deformation in the first image relative to the second and then drop the rope at
the corresponding point in the second image. As the point with largest distance may be an outlier,
we use the point at the 90th percentile of the deformation distances for the pick action. Figure 3
compares the performance of the proposed method against the baseline method. We show quantitative
results for demonstration sequences of three different lengths. For each sequence, we report the
mean distance across 10 different repeats (each repeat used the same demonstration sequence). The
results in Figure 3 show that our method outperforms the baseline. The baseline method uses a
heuristic strategy that assumes no knowledge of the dynamics model of the rope. The superior

Figure 3: Comparison of the proposed method against a hand engineered baseline. The performance
of each method was measured by computing the distance between the rope configurations in the
sequence of images provided as the demonstration and that achieved by the robot. The figure shows
the performance measured using TPS-RPM, and lower distance indicates better performance. We
measured performance using sequences of short, medium and long lengths. Our method outperforms
the baseline and has lower performance variance.
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Figure 4: Each pair of rows in the figure show the result of the robot imitating a human demonstration.
The first row in each pair, shows the the sequence of images provides as inputs to the robot through
a demonstration and the second row in the pair shows the states achieved by the robot as it tries to
follow the demonstrated trajectory. On the left are 3 step sequences and on the right are more difficult
6 step sequences. The robot fails to follow the demonstration in the top pair of the 6 step sequence
whereas is it is quite sucessful in the bottom pair. The red heatmap on each image of the robot’s
execution trace shows the probability distribution over the predicted location of the pick action and
the blue arrow shows the direction of the action.

performance of our method indicates that through the self-supervision phase, the robot has indeed
learnt a meaningful model for rope manipulation. Some example sequences are shown in Figure 4.
Videos of the self-supervised data collection, the demonstrations, and the autonomous executions are
available at https://ropemanipulation.github.io/
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