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Abstract

We present novel learning-based fluid body controller. The underlying fluid bodies
are represented using very high-dimensional configuration spaces, and we use
problem-specific dimensionality reduction and controller optimization techniques
to manipulate them. These optimized controllers are used for robotic motion
planning to manipulate liquids. Specifically, we focus on the problem of liquid
transfer where the goal is to move liquid between containers. We show that, when
restricted to a specific manipulation problem, the configuration of liquid body
lies in a low-dimensional manifold. When this manifold is identified, controller
optimization becomes feasible and the optimized controller is computationally
efficient.

1 Introduction

Fluid bodies, such as the air we breathe and the water we drink, are ubiquitous in our daily lives.
Therefore, the theoretical and computational study of these deformable bodies have drawn consider-
able attention. Current numerical solvers can simulate the dynamics of such fluids with high accuracy.
However, since fluid bodies can undergo arbitrarily large deformations, they are discretized with a
large number of elements, and thereby resulting in a high-DOF configuration space representation.
Popular discretization methods use either a large set of particles or a high resolution mesh (see
[1, 2]). This high-dimensionality results in high computational overhead. For example, current fluid
simulation algorithms [3] can take more than 5 hours to model a pool of water with 1.7 million
particles on a desktop machine for visual simulation. A highly accurate simulation of dam-break can
take hundreds of hours on a small cluster, as reported in [4].

These recent advances in efficient fluid simulation has resulted in the development of different
techniques for fluid control. Fluid control problems have many applications in chemistry for reaction
control [5], in robotics for liquid manipulation [6], and in computer graphics for physically based
animation [7]. However, even though the numerical simulation of fluid bodies is computationally
feasible, direct application of tools from optimal control theory to fluid bodies is still regarded as
computationally very challenging. For example, iterative dynamic programming [ 8], a widely used
tool in robotics to control nonlinear dynamic systems, has a cost that is at least quadratic in the
dimension of configuration space. On the other hand, general-purpose policy search methods [9]
require sampling in the configuration space and suffer from the-curse-of-dimensionality.

We summarize our work on the design of novel problem-specific controllers for high dimensional
fluid bodies using learning methods. In Section 2, we introduce a system identification method to
learn a low-dimensional liquid dynamic model from high-dimensional groundtruth fluid simulation
data, which is used for liquid pouring using a robot manipulator. In Section 3, we introduce a new
dataset and a neural-net feedback controller for liquid transfer planning.

∗{zherong,dm}@cs.unc.edu

NIPS Workshop on Intuitive Physics (NIPS 2016), Barcelona, Spain.



2 Liquid System Identification

In order to design an efficient algorithm for liquid manipulation [10], we try to restrict the degree-of-
freedoms (DOFs) of the liquid body to a low-dimensional manifold embedded in its high-dimensional
configuration space. The observation behind this idea is that DOFs of a liquid body are mostly used
for secondary dynamics (such as splashes, small-scale curls, and turbulences) instead of primary
dynamics (i.e. the large-scale laminar flow) that is the prime application of the controller. However,
the shape of this manifold is hard to model and scenario specific. As a result, we mainly focus on the
problem of liquid transfer, where the goal is to transfer the liquid body between the containers. This
is a very important liquid manipulation problem that frequently arises in different robot applications.

Instead of using general-purpose methods in machine learning for manifold identification, we assume
that the dynamics of main flow during liquid transfer can be captured by a two-dimensional manifold.
Specifically, we use two features inspired by simple rules governing fluid motion, the Bernoulli’s
equation [11], and rigid body formulation (see Figure 1 (b)). These features depend on only two
global variables, as illustrated in Figure 1 (a). The linear coefficients of these features are learned by
solving a regression to match the dynamic behaviour with a groundtruth fluid simulation dataset of
127 random simulations.
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Figure 1: (a): Instead of using high-dimensional representation (e.g., a set of particles), we use only
the global variables: V out which is the main outflow velocity, and V ol which is the total volumne
of liquid inside the bounding box of source container. (b): The two physically inspired features.
Left: If the Bernoulli equation is used between two end points of the dashed streamline, we have
V out

≈

√

2g∆h. Right: If a single fluid particle sliding down the wall of the container, we have
V out

≈ sin(θ − π/2).

After learning the reduced dynamic model, we can perform time integration in the resulting two-
dimensional configuration space, which is orders of magnitude faster than accurate fluid simulation.
To highlight the benefit, we plugged our model into an optimization based robot motion planner and
generate a set of successful liquid transfer trajectories. The computation of each motion plan can be
accomplished within 10 minutes compared with more than 3 hours using accurate fluid modelling.

3 Neural-Net Feedback Planner

Figure 2: An illustra-
tion of our reward function (red).
The function is centered around the
opening of target container (light
gray). We impose higher reward
for particles closer to the center of
opening and a negative reward for
spilled particles.

In Section 2, we proposed a learned liquid dynamic model that is used for
motion planning. However, the planner itself uses a conventional optimization-
based formulation. In our follow-up work [12], we unify the functionality of
liquid dynamics and liquid transfer control using a single neural-net. Trained
using carefully prepared data, the neural-net can make decision at real-time
rates, and thereby facilitate feedback motion planning.

The preparation of training dataset is crucial to the success of this method.
If we are learning for liquid system identification, our training dataset can
be obtained from arbitrary liquid transfer simulations, as shown in Section 2.
As long as the simulator can generate accurate results, our reduced model
can learn the liquid dynamics. However, we are learning not only the liquid
dynamics but also the control policy. Therefore, our new training dataset must
contain only successful liquid transfer trajectories, where liquid materials
finally fall inside our target container.

To generate such trajectories, we use stochastic optimizer (the CMA-ES algorithm) to maximize
a reward function in a carefully-designed, problem-specific, low-dimensional search space. As
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Figure 4: Our real-time controller can be used on new planning problems, such as dynamic obstacle
(left) and 3D workspaces (right), although our dataset lives in 2D workspaces.

illustrated in Figure 2, our reward function encourages every discrete liquid material to fall inside
the target container by penalizing the distance between the particle’s position and center of target
container opening. In order to avoid spilling, we further impose a high negative reward for each
particle that falls outside the target container. To reduce the dimension of our search space, we use
spline interpolation to parameterize the transfer trajectory.

Each such optimization is computationally very costly since we need to compare qualities of
many tentative solutions where each comparison requires a fluid re-simulation. In [12], we gen-
erated two datasets, TRANSFER and TRANSFER+SPILL. In each dataset, we optimized for a
set of 1000 successful pouring trajectories in 2D, where each optimization requires 6000 fluid
re-simulations. Altogether, the 6 million fluid re-simulations took 8.1 days of computation on
a 1000-core cluster. These trajectories differ in the initial relative position of source and target
container, the moving speed of target container, and the amount of liquid in the source container.
Moreover, the trajectories in the two datasets differ in the initial liquid velocity. In TRANSFER
dataset, we set the initial liquid’s velocity to be the same as that of the source container, while
in TRANSFER+SPILL dataset, we always set the initial liquid ’s velocity to be zero. Therefore,
it is more likely that liquids will spill from the source container in TRANSFER+SPILL dataset
due to the difference between liquid’s velocity and container’s velocity (see Figure 3). In order to
maximize the reward, trajectories in TRANSFER+SPILL dataset have to learn to avoid spilling.

(a) (b) (c)
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Figure 3: We generated two datasets: TRANSFER and
TRANSFER+SPILL. (a): TRANSFER+SPILL encourages spilling
by setting initial liquid velocity to zero. (b): The trajectories in
TRANSFER+SPILL learns to turn the source container slowly to
avoid spilling. (c): Finally, trajectories in both datasets can success-
fully get all liquids in target container. (d): we sample free surface
(red) as a heightfield and feed this to our neural-net.

Using these two datasets, we train a small neural-net that
takes as input the observed liquid free surface location
and outputs the predicted liquid outflow velocity as well
as the desired linear and angular speed of source container
for successful liquid transfer (see Figure 3). Note that
by using only the sampled free surface as input, we have
greatly reduced the dimensional of source container by
ignoring all the velocity information. We recover the
velocity information by having the neural-net memorize
a short history of observed free surface locations.

The neural-net controller trained using this dataset gains
desired skills of liquid transfer and more than 85% of dis-
crete liquid elements finally lie inside the target container
in all our benchmarks. When we train the Neural-Net using TRANSFER+SPILL dataset, it also
learns to avoid spilling by turning the source container slowly at an early stage of liquid pouring. The
learned controller can be used in new scenarios not seen in the training dataset, such as scenarios
with new fluid materials and 3D workspaces, as illustrated in Figure 4.

4 Limitation and Future Work

A major limitation of our current work is that the controller is problem dependent. For example,
we treat free surface as a height field in Section 3. However, this representation excludes more
general topology changes such as breaking wave. And the method is limited to laminar flow. These
constraints can be relaxed in the future as illustrated in our follow up work [13] where we propose a
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spacetime optimization technique for keyframe-based smoke control, which can be used as a building
block for general reinforcement learning (see [14]). Moreover, as noted by [14], a critical problem

in policy search is that the neural-net should be able to represent the dataset. Several methods have
been proposed to adapt the dataset based on the state distribution generated by following the trained
neural-net. However, updating the dataset is very costly in our case because each update requires
several passes of fluid re-simulation which will at least take hours on current machine.
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