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Abstract

This paper presents the Neural Physics Engine (NPE), an object-based neural
network architecture for learning predictive models of intuitive physics. The NPE
draws on the strengths of both symbolic and neural approaches: like a symbolic
physics engine, it is endowed with generic notions of objects and their interactions,
but as a neural network it can also be trained via stochastic gradient descent to adapt
to specific object properties and dynamics of different worlds. We evaluate the
efficacy of our approach on simple rigid body dynamics in two-dimensional worlds
of bouncing balls. By comparing to less structured architectures, we show that the
NPE’s compositional representation of the causal structure in physical interactions
improves its ability to predict movement, generalize to different numbers of objects,
and infer latent properties of objects such as mass.

1 Introduction

A sense of intuitive physics can be seen as a program [7]] that takes in input provided by a physical
scene and the past states of objects and then outputs the future states and physical properties of
relevant objects for a given task. At least two general approaches have emerged in the search for
such a program that captures common-sense physical reasoning. The top-down approach [3, 16} [17]]
formulates the problem as inference over the parameters of a symbolic physics engine, while the
bottom-up approach [} 5 [8H1 1} [13] learns to directly map physical observations to motion prediction
or physical judgments. A program under the top-down approach can express and generalize across
any scenario supported by the entities and operators in its description language. However, it may be
brittle under scenarios not supported by its description language, and adapting to these new scenarios
requires modifying the code or generating new code for the physics engine itself. In contrast, the
same model architecture and learning algorithm under gradient-based bottom-up approaches can be
applied to new scenarios without requiring the physical dynamics of the scenario to be pre-specified.
However, such models require extensive amounts of data, and oftentimes transferring knowledge to
new scenes requires retraining, even in cases that seem trivial to human reasoning.

This paper takes a step toward bridging this gap between expressivity and adaptability by proposing a
model that combines rough symbolic structure with gradient-based learning. We present the Neural
Physics Engine (NPE), a predictive model of physical dynamics. It exhibits several strong inductive
biases that are explicitly present in symbolic physics engines, such as a notion of objects and object
interactions. It is also end-to-end differentiable and thus is also flexible to tailor itself to the specific
object properties and dynamics of a given world through training. This approach — starting with a
general sketch of a program and filling in the specifics — is similar to ideas presented by [12,14]. The
NPE’s general sketch is the structure of its architecture, and it extends and enriches this sketch to
model the specifics of a particular scene by training on observed trajectories from that scene.
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2 Neural Physics Engine

(a) (b) NPE applied on object 3 (€) NP applied on object 3 (d) LSTM applied on object 3

Figure 1: Scenario and Models: This figure compares the NPE, the NP and the LSTM architectures
in predicting the velocity of object 3 for an example scenario [a] of two heavy balls (cyan) and two
light balls (yellow-green). Objects 2 and 4 are in object 3’s neighborhood, so object 1 is ignored.
[b]: The NPE encoder comprises a pairwise layer (yellow) and a feedforward network (red) and its
decoder (blue) is also a feedforward network. [c]: The NP encoder is the same as the NPE encoder,
but without the pairwise layer. The NP decoder is the same as the NPE decoder. [d]: We shuffle
the context objects inputted into the LSTM and use a binary flag to indicate whether an object is a
context or focus object.

This paper’s contribution links two levels of factorization and composition in learning physical
dynamics. On the level of the physical scene, we factorize the scene into object-based representations
(Fig[Th), and compose smaller building blocks to form larger objects (Fig[2k). This framework of
representation adapts to complex scenes and configurations with variable object count. On the level of
the physics program, the NPE architecture explicitly reflects a causal structure in object interactions

by factorizing object dynamics into pairwise interactions. As a predictive model of physical dynamics,

the NPE models the future velocity vEfH] of a single focus object f as a function composition of

the pairwise interactions between itself and other neighboring context objects ¢y, in the scene. This
structure guides learning towards object-based reasoning, and by design allows physical knowledge
to transfer across variable number of objects and for object properties to be explicitly inferred.

The input is represented as pairs of object state vectors {(of, 00, )1 (04, 00,) 718 L} A
state vector comprises extrinsic properties (position, velocity, orientation, angular velocity), intrinsic
properties (mass, object type, object size), and global properties (gravitational, frictional, and pairwise
forces). The NPE also predicts angular velocity along with velocity, but for our experiments we
always set angular velocity, as well as gravity, friction, and pairwise forces, to zero. As shown in Fig.
, the NPE is a composition of an encoder function f,. that summarizes the interaction of a single
object pair and a decoder function that takes the sum of encodings of all pairs to predict the velocity.

How fepc and fg4.. are composed emulates the high-level formulation of many symbolic physics
engines. We provide a loose interpretation of the encoder output e . as the effect of object c on object
f, and require that these effects are additive as forces are, allowing the NPE to scale naturally to
different numbers of neighboring context objects. These inductive biases have the effect of strongly
constraining the space of possible programs of predictive models that the NPE can learn, focusing on
compositional programs that reflect pairwise causal structure in object interactions.

We compared the NPE to two baselines (Fig. [Tk,d). The No-Pairwise (NP) baseline is a Markovian
variant of the Social LSTM presented by [2]]; it sums the encodings of context objects after encoding
each object independently. It most directly highlights the value of the NPE’s pairwise factorization.
Because it moves through the object space sequentially, the LSTM baseline’s lack of factorized
compositional structure highlights the value of the NPE’s function composition of the independent
interactions between an object and its neighbors.

3 Evaluation

Using the matter-js physics engine [4]], we evaluate the NPE on worlds of bouncing balls. These
worlds exhibit self-evident dynamics and support a wide set of scenarios that reflect everyday physics.
Bouncing balls have been of interest in cognitive science to study causality and counterfactual
reasoning, as in [[6]. We trained on 3-timestep windows in trajectories of 60 timesteps (10 timesteps
~ 1 second) using rmsprop [[15] with a Euclidean loss. Experimental results on held-out test data are
summarized in Fig. |2} Randomly selected simulation videos are athttps://drive.google.com/
drive/folders/OBxCJLi4FnT_6QW4tcF94dldoLWs?usp=sharing,


https://drive.google.com/drive/folders/0BxCJLi4FnT_6QW4tcF94d1doLWs?usp=sharing
https://drive.google.com/drive/folders/0BxCJLi4FnT_6QW4tcF94d1doLWs?usp=sharing
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Figure 2: Results: The NPE scales to complex dynamics and world configurations while the NP and
LSTM cannot. The masses are visualized as: cyan = 25, red = 5, yellow-green = 1. [a] Consider the
collision in the 7-balls world (circled). In the ground truth, the collision happens between balls 1
and 2, and the NPE correctly predicts this. The NP predicts a slower movement for ball 1, so ball
2 overlaps with ball 3. The LSTM predicts a slower movement and incorrect angle off the world
boundary, so ball 2 overlaps with ball 3. [b]: In mass inference, the NPE notably performs similarly
well whether in a world it has seen before or in a world with a number of objects it hasn’t trained
on, further showcasing its strong generalization capabilities. [¢] At first glance, all models seem to
handle collisions well in the “O” world (diamond), but when there are internal obstacles (cloud),
only the NPE can successfully resolve collisions. This suggests that the NPE pairwise factorization
handles object interactions well, letting it generalize to different world configurations, whereas the
NP and LSTM have only memorized the geometry of the “O” world.

Generalization and knowledge transfer We test whether learned knowledge of these simple
physics concepts can be transferred to worlds with a number of objects previously unseen. We train
on worlds with 3, 4, and 5 balls and test on more complex worlds with 6, 7, and 8 balls, all with equal
mass. As shown in Fig. [, the NPE exhibits much cleaner extrapolation to worlds with more objects.
The NPE’s performance of this generalization task suggests that its architectural inductive biases
are useful for generalizing knowledge learned in Markovian domains with causal structure in object
interactions.

Mass inference We show that the NPE infers latent properties such as mass (Fig. [2b). We uniformly
sampled the mass for each ball from the log-spaced set {1, 5, 25}. For evaluation, we select scenarios
exhibiting collisions with the focus object, fix the masses of all objects except that of the focus
object, and score the NPE’s prediction under all possible mass hypotheses for the focus object. The
prediction is scored against the ground-truth under the same Euclidean loss used in training. The
mass hypothesis whose prediction yielded the lowest error is the NPE’s maximum likelihood estimate
of the mass for the focus object. The NPE achieves about 90% accuracy, while a random model
would guess the correct mass with 33% accuracy.

Different scene configurations We demonstrate representing large structures as a composition of
smaller objects as building blocks in a world of balls and obstacles. These worlds contain 2 balls
bouncing around in variations of 4 different wall geometries. “O” and “L” geometries have no internal
obstacles and are in the shape of a rectangle and “L” respectively. “U” and “I”” have internal obstacles.
Obstacles in “U” are linearly attached to the wall like a protrusion, while obstacles in “I”” have no
constraint in position. We randomly vary the position and orientation of the “L” concavity and the
“U” protrusion. We randomly sample the positions of the “I” internal obstacles.

We train on the conceptually simpler “O” and “L” worlds and test on the more complex “U” and
“I” worlds (Fig. 2k). Variations in wall geometries adds to the difficulty of this extrapolation task.
However, our state space representation was designed to be flexible to this variation, by representing
walls as composed of uniformly-sized obstacles, similarly to how many real-world objects are
composed of smaller components. At most 12 context objects are present in the focus object’s
neighborhood at a time. The “U” geometries have 33 objects in the scene, the most out of all the
wall geometries. Using such a compositional representation of the scene allows the NPE to scale to
different configurations, which would not be straightforward to do without such a representation.



4 Discussion

We have demonstrated a compositional object-based approach to learning physical dynamics in
worlds of bouncing balls in several tasks ranging in complexity. Further work includes generalization
to unseen object types and physical laws such as in worlds with immovable obstacles and stacked
block towers. Because the NPE is differentiable, we expect that by backpropagating prediction
error to its input, it may be able to infer the positions of “invisible” objects, whose effects are felt
but whose position is unknown. Our results invite questions on how much prior information and
structure should and could be given to bottom-up neural networks, and what can be learned without
inducing such structure. It would be interesting to explore how similar models to the NPE can be
used as subprograms that can be called by parent programs to evolve entity states through time for
applications in areas such as model-based planning and model-based reinforcement learning.
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